Что было первым изделием сделанным из алюминия

Где используется алюминий?

Что было первым изделием сделанным из алюминия

25 апреля 2017 г. в 16:01

О том, где еще может использоваться алюминий, рассказывает Life.ru.

В небе и в космосе

Впервые алюминий «полетел» в 1900 году — в виде каркаса и винтов огромного дирижабля LZ-1 Фердинанда Цеппелина. Но мягкий чистый металл годился только для медлительных летательных аппаратов легче воздуха. По-настоящему «крылатый» алюминий  был уже прочнее в пять раз, поскольку содержал в своём составе марганец, медь, магний, цинк в разных процентных соотношениях — небо и космос покоряли разновидности дюралюминия, сплава, изобретённого ещё в начале ХХ века немецким инженером Альфредом Вильмом.

Материал был перспективным, но имел и немало ограничений — требовал так называемого старения, то есть набирал заложенную в него прочность не сразу, а лишь со временем. Да и сварке не поддавался… И тем не менее покорение космоса началось именно с дюраля, из которого в том числе выполнен и шар знаменитого первого искусственного спутника Земли.

Гораздо позже, в разгар космической эпохи, начали появляться сплавы и материалы на основе алюминия с куда более замечательными свойствами.

К примеру, дружба алюминия с литием позволила сделать детали самолётов и ракет значительно легче, не снижая прочности, а сплавы с титаном и никелем обладают свойством «криогенного упрочнения»: в космическом холоде пластичность и прочность их только возрастают.

Из тандема алюминия и скандия была выполнена обшивка космического челнока «Буран»: алюминиево-магниевые пластины стали гораздо прочнее на разрыв, сохранив при этом гибкость и вдвое повысив температуру плавления.

Более современные материалы — не сплавы, а композиты. Но и в них основой чаще всего является алюминий. Один из современных и перспективных авиакосмических материалов называется «бороалюминиевый композит», где волокна бора прокатываются сэндвичем со слоями алюминиевой фольги, образуя под высокими давлениями и температурами крайне прочный и лёгкий материал. К примеру, лопатки турбин продвинутых авиационных двигателей представляют собой бороалюминиевые несущие стержни, одетые в титановую «рубашку».

В автопроме и на транспорте

Сегодня у новых моделей Range Rover и Jaguar доля алюминия в конструкции кузова составляет 81%. Первые же эксперименты с алюминиевыми кузовами принято приписывать компании Audi, презентовавшей A8 из лёгких сплавов в 1994 году.

Однако ещё в начале ХХ века этот лёгкий металл на деревянном каркасе был фирменным стилем кузовов знаменитых британских спорткаров Morgan.

Настоящее «алюминиевое вторжение» в автопром началось в 1970-е, когда заводы массово принялись использовать этот металл для блоков цилиндров двигателей и картеров коробок передач вместо привычного чугуна; чуть позже распространение получили легкосплавные колёса вместо штампованных стальных.

В наши дни ключевой тренд автопрома — электричество. И лёгкие сплавы на основе алюминия приобретают особую актуальность в кузовостроении: «энергосберегающий» металл делает электромобиль легче, а значит, увеличивает пробег на одном заряде батарей. Алюминиевые кузова использует марка Tesla — законодатель мод на рынке автомобилей будущего, и этим, собственно, всё сказано!

Отечественных автомобилей с алюминиевыми кузовами пока нет. Но нержавеющий и лёгкий материал уже начинает проникать в российскую транспортную сферу. Характерный пример — ультрасовременные скоростные трамваи «Витязь-М», чьи салоны полностью выполнены из алюминиевых сплавов, практически вечных и не нуждающихся в постоянной подкраске. Стоит отметить, что на создание одного трамвайного интерьера требуется до 1,7 тонны алюминия, который поставляет Красноярский алюминиевый завод «Русала».

«Потолок, стены, стойки — всё алюминиевое. И это не просто обшивка листами, детали сложные, совмещающие в себе и отделочные, и несущие элементы, и туннели для вентиляции и проводки, — рассказывает Виталий Деньгаев, гендиректор компании «Красноярские машиностроительные компоненты», где были созданы алюминиевые салоны «Витязя». — Плюс помимо эстетики мы получаем ещё и высочайшую безопасность: в отличие от пластиков и синтетики алюминиевый салон не выделяет вредных веществ, если возникло возгорание!»

С 17 марта этого года 13 трамваев «Витязь-М» начали ходить по Москве и к 5 апреля уже перевезли первую сотню тысяч пассажиров! Этот быстрый и бесшумный городской транспорт с салонами на 260 человек, с Wi-Fi, климат-контролем, местами для инвалидов и детских колясок и прочими элементами комфорта, рассчитан на срок службы в 30 лет, что вдвое больше, чем у составов прошлых моделей. В ближайшие три года столица получит 300 «Витязей», 100 из которых встанут на рельсы уже в этом сезоне.

В принтерах будущего

Элементарными любительскими 3D-принтерами, печатающими из пластиковой нити, уже никого не удивишь. Сегодня начинается эра полноценной серийной 3D-печати деталей из металла.

Алюминиевый порошок — едва ли не самый распространённый материал для технологии, называемой AF (от Additive Fabrication, «аддитивное производство»).

Additive по-английски — «добавка», и в этом глубокий смысл названия технологии: деталь производится не из болванки, от которой в процессе обработки отрезается лишний материал, а наоборот — добавлением материала в рабочую зону инструмента.

Металлический порошок выходит из дозатора AF-машины и послойно спекается лазером в единую прочную массу монолитного алюминия.

Детали, которые делаются цельными по методу AF, поражают воображение своей пространственной сложностью; выполнить их классическими методами даже на самых современных металлообрабатывающих станках — невозможно! За счёт ажурной конструкции детали, созданные на машинах аддитивной печати из порошков алюминиевых сплавов, имеют прочность, как у монолита, будучи при этом в несколько раз легче. Производятся они безотходно и быстро — такие металлические «кружева» незаменимы в биомедицине, авиации и космонавтике, в точной механике, при изготовлении пресс-форм и так далее.

Ещё недавно все технологии, связанные с Additive Fabrication, были иностранными. Но сейчас активно развиваются отечественные аналоги. Например, в Уральском федеральном университете (УрФУ) готовится к запуску экспериментальная установка по производству металлических порошков для AF-3D-печати. Установка работает на принципе распыления расплавленного алюминия струёй инертного газа, такой метод позволит получать металлические порошки с любыми заданными параметрами размерности зерна.

В строительстве и освещении

Алюминий может быть также фасадным и кровельным материалом, срок службы которого не ограничивается парой лет и который крайне удобен для дизайнеров и монтажников! Для строительства разработаны особые патентованные сплавы и композиты с самыми разными свойствами — Alclad, Kal-Alloy, Kalzip, Dwall Iridium. Из алюминия можно штамповать детали, в которых кровельная плоскость составляет единое целое с несущими элементами. Это необходимо, к примеру, для создания раздвижных крыш стадионов.

Читайте также  Как отличить силумин от алюминия

Покрытые специальной разновидностью фторполимера, родственной тефлону, алюминиевые детали крыш выдерживают огромные нагрузки от ветра и осадков. А при сооружении кровель огромных размеров, где общая длина листа от края до края может достигать нескольких десятков метров, используют особую технологию, разработать которую также позволила пластичность алюминия.

Чтобы избежать ненадёжного соединения множества небольших листов, на стройплощадку подвозят алюминиевую ленту шириной в несколько метров, свёрнутую в огромный рулон, и прямо на стройплощадке пропускают через специальную машину, делающую ровную ленту профилированной, а значит жёсткой. По специальным направляющим с роликами алюминиевый профиль подают на крышу здания.

Эту технологию разработала британская Corus Group, один из мировых лидеров в области производства кровельных алюминиевых листов (ныне в составе Tata Steel).

В нашей же стране алюминиевая архитектура по-настоящему разворачивается только сейчас, с отставанием от мировых темпов, но бодро их нагоняя, — из последних примеров внедрения можно назвать крышу стадиона «Зенит-Арена» в Санкт-Петербурге, объекты казанской Универсиады, сочинский аэропорт, строящийся сейчас в Нижнем Новгороде уникальный легкосплавный мост и другие объекты.

Здание построено, кровля возведена, теперь нужен свет! И тут алюминий снова в тренде. Это не только «крылатый» металл, но ещё и «металл света». Сейчас в мире горят миллиарды LED-ламп и число их ежесекундно растёт. В каждой лампе установлен алюминиевый радиатор, отводящий лишнее тепло от кристаллов светодиодов, не дающий им перегреться. Но куда более важную роль алюминий играет при изготовлении основы самих светодиодов — лейкосапфира.

Так называется искусственный кристалл из особо чистого оксида алюминия. Сейчас тонны сырья для кристаллов в основном завозятся из-за границы, однако недавно в Набережных Челнах при поддержке Ростеха запущена первая в стране линия по производству особо чистого оксида алюминия для выращивания монокристаллов лейкосапфиров.

В Алюминиевой ассоциации убеждены, что в течение 2–3 лет наши предприятия смогут полностью заместить импорт в Россию особо чистого оксида алюминия, что резко стимулирует отечественное светодиодное производство.

В нашей жизни — повсюду…

…Просто мы не всегда об этом знаем! Практически все качественные гаджеты сделаны на основе алюминиевых сплавов: рамки и крышки смартфонов, планшетов, ноутбуков, корпуса «пауэрбанков» и многое другое. Спортивный инвентарь, детские коляски, кулинарная посуда, батареи отопления, мебельная фурнитура — список сфер, где задействован лёгкий металл, безграничен.

Но почему мы не всегда об этом знаем? Дело в том, что алюминий и его сплавы в «голом виде», как та, всем известная, но безнадёжно устаревшая алюминиевая ложка, в наши дни почти не встречается. Сегодня бал правит технология анодирования, которая позволяет покрывать детали из алюминия и его сплавов прочной износостойкой плёнкой оксида.

Анодирование не пачкает рук и может получить практически любой цвет и текстуру.

Одно из перспективнейших бытовых алюминиевых направлений — велосипедные рамы. Алюминиевая рама очень лёгкая, поэтому и поднимать велосипед, и ездить на нём очень удобно. Рама не ржавеет при повреждениях краски, легирующие добавки делают металл очень прочным, а технологии под названиями «баттинг» и «гидроформинг» позволяют производить трубы с переменной толщиной и с любыми изгибами, облегчая и усиливая раму именно там, где это нужно.

Миллионы велосипедов — огромный рынок! Однако пока рамы всех продаваемых и собираемых в нашей стране двухколёсников — импортные… «Впрочем, в этой сфере наметилась небольшая революция: инженеры «Русала» разработали особый новый сплав, идеально подходящий для велорам, и ведут работу по развитию производства рам в нашей стране, — рассказывает заместитель редактора журнала «Металлоснабжение и сбыт» Леонид Хазанов. — Проект поддерживают «Русал», как единственный российский производитель алюминия, расположенный в Набережных Челнах завод алюминиевых профилей «Татпроф», готовый делать трубы для рам, и отечественная компания — сборщик велосипедов «Веломоторс». Если задуманные масштабы производства будут реализованы, наши рамы должны стать дешевле китайских и при этом куда выше по качеству».

Россия — мировой алюминиевый лидер, входящий в первую тройку производителей этого металла. СССР начал строить алюминиевые заводы в начале тридцатых годов ХХ века, к середине десятилетия полностью избавившись от импорта. Однако по-настоящему в «алюминиевую эру» мы вступаем, как ни странно, только сейчас.

Основной владелец «Русала» Олег Дерипаска неоднократно заявлял, что уровень потребления алюминия в России гораздо ниже общемирового и сегодня наконец настало время сломить этот тренд и приложить максимум усилий и средств для создания перерабатывающих мощностей на территории страны и вытеснить импортную продукцию, к качеству которой зачастую возникает масса вопросов.

Долгие годы инженеры-проектировщики избегали использования алюминия, поскольку в устаревших нормативных документах алюминиевые сплавы и композиты просто не фигурировали — сегодня же нормативы, ГОСТы и СНИПы пересматриваются и обновляются в духе времени. И практически все сферы промышленности ждут открытия для себя новых областей использования этого металла.

Источник: https://xakac.info/news/61188

Из чего это сделано?

Парусные яхты из алюминия набирают все большую популярность. Благодаря свойствам этого металла, его использование в кораблестроительстве происходит все чаще. Парусные алюминиевые яхты становятся неотъемлемым атрибутом красивой жизни. Сейчас сложно найти человека, обладающего «большими деньгами», но не имеющего ее в своей собственности. Существует множество сплавов этого металла, поэтому, решившись на такое приобретение, нужно выяснить из каких марок алюминия делают яхты?

Алюминиевая суперяхта Riva Mythos

Чем же хороши такие суда из алюминия?

До настоящего времени, такой предмет роскоши, как яхта изготавливался преимущественно из пластика. Были модели, производимые из стали, однако, они не были так востребованы, как пластиковые изделия. Все дело в том, что пластик – очень дешевый материал. Помимо того, он обладает легким весом и практичен в эксплуатации. Сталь же в разы тяжелее. Несмотря на более прочную структуру и долговечность материала, тяжеловесность делала его очень непопулярным.

Алюминий для яхт обладает множеством преимуществ по сравнению с пластиком и сталью. Прежде всего, яхты, изготовленные из него, обладают высокими эксплуатационными свойствами. Они могут перевозить грузы во много раз больше тех, что транспортируют судна из пластика. Кроме того, на такой яхте можно выходить в открытое море. Она легко может справиться с неблагоприятными погодными условиями, что явно не грозит пластиковому кораблю.

Алюминий менее прочен, чем сталь. За счет того, что этот материал достаточно мягкий, он легко может повредиться под влиянием незначительного физического воздействия. Однако, алюминиевая яхта во много раз легче стальной, что определяет ее быстроходность. Высокая скорость – одна из самых важных качеств судов.

Одним из важных недостатков такого материала является его высокая стоимость. Она не выдерживает сравнения с моделями из пластика, но в разы дешевле цены деревянной или стальной яхты. Сам метал обладает достаточно высокой стоимостью. Для изготовления судна требуется меньшее количество материала, чем если бы она состояла из стали. Также алюминий очень легко обрабатывать, что существенно снижает его стоимость.

Читайте также  Средство для полировки алюминия

Как правило, парусные яхты из алюминия изготавливаются по индивидуальному заказу. Также возможно серийное производство, но одинаковых моделей будет минимальное количество.

Сплавы этого метала эффективно противостоят появлению коррозии. При покупке яхты, нужно внимательно отнестись к составу алюминия.

Алюминий на заводе

Какая марка алюминия подойдет для яхты?

Для изготовления яхт редко используется чистый алюминий. Чаще всего применяют его сплавы с магнием и кремнием.

Самыми лучшими марками, которые можно использовать в кораблестроительстве являются АМг5В и АМг6. Это деформируемые сплавы, которые обладают всеми необходимыми качествами для создания качественного судна. Эти марки алюминия достаточно эластичны, что позволяет придавать им ту форму, которая нужна по проекту. Также они меньше всего подвержены коррозии и обладают лучшими эксплуатационными качествами по сравнению с другими сплавами алюминия для яхт: прочность, легкость, долговечность.

Для того чтобы понять, что же представляют собой эти марки, нужно знать их расшифровку. Буква «А» вначале, соответственно, означает, что главным компонентом этого сплава является алюминий. Следующие за ней «Мг» — свидетельствуют о наличии в составе магния. Цифры 5 и 6 говорят о количестве вспомогательного материала в сплаве в процентном соотношении. Буква «В» в первом случае означает, что материал изготавливался выкаткой высокого качества, направленной на листы металла, предварительно состаренные, а также закаленные.

Важные моменты приобретения и эксплуатации алюминиевого судна

Покупая такое судно, нужно помнить, что корпус из алюминия парусной яхты нуждается в постоянном уходе. Необязательно привлекать для этого специалистов, делать плановую покраску и исправлять небольшие дефекты вполне можно самостоятельно. Но учитывая, что яхта все же является предметом роскоши, ее ремонт вряд ли будет проводиться самим хозяином, которому легче нанять для этих целей работников. К тому же большинство яхт имеют внушительные габариты, что делает их обслуживание тяжелым и длительным процессом.

Для того чтобы яхта не проржавела и не развалилась через некоторое время после покупки, нужно обратить внимание на ряд принципиально важных моментов. Прежде всего, это состав сплава, из которого она изготовлена, как и было отмечено ранее. Также важно, чтобы с алюминиевыми составляющими не вступали в контакт элементы из других металлов, способных привести к коррозии. Алюминиевые части яхты должны отделяться при помощи резиновых прокладок от комплектующих из стали, меди, свинца, чугуна, а также нержавейки.

Алюминиевая яхта – удовольствие не из дешевых. Но ее показатели качества делают эти затраты оправданными.

.

Источник  ВОДА – БЕРЕГ.

.

.

.

Источник: http://wwportal.com/iz-chego-e-to-sdelano/

Алюминий, производство алюминия: технология, процесс и описание

Алюминий обладает массой свойств, которые делают его одним из самых используемых материалов в мире. Он широко распространен в природе, занимая среди металлов первое место. Казалось бы, и трудностей с его производством быть не должно. Но высокая химическая активность металла приводит к тому, что в чистом виде его не встретить, а производить – сложно, энергоемко и затратно.

Сырье для производства

Из какого сырья получают алюминий? Производство алюминия из всех минералов, его содержащих, дорого и нерентабельно. Добывают его из бокситов, которые содержат до 50% оксидов алюминия и залегают прямо на поверхности земли значительными массами.

Эти алюминиевые руды имеют достаточно сложный химический состав. Они содержат глиноземы в количестве 30-70% от общей массы, кремнеземы, которых может быть до 20%,окись железа в пределах от 2 до 50%, титан (до 10%).

Глиноземы, а это окись алюминия и есть, состоят из гидроокисей, корунда и каолинита.

В последнее время окиси алюминия стали получать из нефелинов, которые содержат еще и окиси натрия, калия, кремния, и алунитов.

Для производства 1 т чистого алюминия нужно около двух тонн глинозема, который, в свою очередь, получают из примерно 4,5 т боксита.

Месторождения бокситов

Запасы бокситов в мире ограничены. На всем земном шаре всего семь районов с его богатыми залежами. Это Гвинея в Африке, Бразилия, Венесуэла и Суринам в Южной Америке, Ямайка в Карибском регионе, Австралия, Индия, Китай, Греция и Турция в Средиземноморье и Россия.

В странах, где есть богатые месторождения бокситов, может быть развито и производство алюминия. Россия добывает бокситы на Урале, в Алтайском и Красноярском краях, в одном из районов Ленинградской области, нефелин — на Кольском полуострове.

Самые богатые месторождения принадлежат именно российской объединенной компании UC RUSAL. За ней идут гиганты Rio Tinto (Англия-Австралия), объединившийся с канадской Alcan и CVRD. На четвертом месте находится компания Chalco из Китая, затем американо-австралийская корпорация Alcoa, которые являются и крупными производителями алюминия.

Зарождение производства

Датский физик Эрстед выделил первым алюминий в свободном виде в 1825 году. Химическая реакция проходила с хлоридом алюминия и амальгамой калия, вместо которой спустя два года немецкий химик Велер использовал металлический калий.

Калий – материал достаточно дорогой, поэтому в промышленном производстве алюминия француз Сент-Клер Девиль вместо калия в 1854 году использовал натрий, элемент значительно более дешевый, и стойкий двойной хлорид алюминия и натрия.

Русский ученый Н. Н. Бекетов смог вытеснить алюминий из расплавленного криолита магнием. В конце восьмидесятых годов того же века эту химическую реакцию использовали немцы на первом алюминиевом заводе. Во второй половине XVIII века было получено около химическими способами 20 т чистого металла. Это был очень дорогой алюминий.

Производство алюминия с помощью электролиза зародилось в 1886 году, когда одновременно были поданы практически одинаковые патентные заявки основоположниками этого способа американским ученым Холлом и французом Эру. Они предложили растворять глинозем в расплавленном криолите, а затем электролизом получать алюминий.

С этого и началась алюминие­вая промышленность, ставшая за более чем вековую историю одной из самых крупных отраслей металлургии.

Основные этапы технологии производства

В общих чертах технология производства алюминия не изменилась с момента создания.

Процесс состоит из трех стадий. На первой из алюминиевых руд, будь это бокситы или нефелины, получают глинозем – окись алюминия Al2O3 .

Читайте также  Как сварить алюминий в домашних условиях

Затем из окиси выделяют промышленный алюминий со степенью очистки 99,5 % , которой для некоторых целей бывает недостаточно.

Поэтому на последней стадии рафинируют алюминий. Производство алюминия завершается его очисткой до 99,99 %.

Получение глинозема

Существует три способа получения окиси алюминия из руд:

— кислотный;

— электролитический;

— щелочной.

Последний способ — наиболее распространенный, разработанный еще в том же XVIII веке, но с тех пор неоднократно доработанный и существенно улучшенный, применяется для переработки бокситов высоких сортов. Так получают около 85 % глиноземов.

Сущность щелочного способа заключается в том, что алюминиевые растворы с большой скоростью разлагаются, когда в них вводится гидроокись алюминия. Оставшийся после реакции раствор выпаривается при высокой температуре около 170° С и опять используется для растворения глинозема;

Сначала боксит дробится и измельчается в мельницах с едкой щелочью и известью, затем в автоклавах при температурах до 250°С происходит его химическое разложение и образовывается алюминат натрия, который разбавляют щелочным раствором уже при более низкой температуре – всего 100° С. Алюминатный раствор промывается в специальных сгустителях, отделяется от шлама. Затем происходит его разложение. Через фильтры раствор перекачивают в емкости с мешалками для постоянного перемешивания состава, в который для затравки добавлена твердая гидроокись алюминия.

В гидроциклонах и вакуум-фильтрах выделяется гидроокись алюминия, часть которой возвращается в качестве затравочного материала, а часть идет на кальцинацию. Фильтрат, оставшийся после отделения гидроокиси, тоже возвращается в оборот для выщелачивания следующей партии бокситов.

Процесс кальцинации (обезвоживания) гидроокиси во вращающихся печах происходит при температурах до 1300° С.

Для получения двух тонн окиси алюминия расходуется 8,4 кВт*ч электроэнергии.

Прочное химическое соединение, температура плавления которого 2050° С, это еще не алюминий. Производство алюминия впереди.

Электролиз окиси алюминия

Основным оборудованием для электролиза является специальная ванна, футерованная углеродистыми блоками. К ней подводят электрический ток. В ванну погружаются угольные аноды, сгорающие при выделении из окиси чистого кислорода и образующие окись и двуокись улглерода. Ванны, или электрилизеры, как их называют специалисты, включаются в электрическую цепь последовательно, образуя серию. Сила тока при этом составляет 150 тысяч ампер.

Аноды могут быть двух типов: обожженные из больших угольных блоков, масса которых может быть больше тонны и самообжигающиеся, состоящие из угольных брикетов в алюминиевой оболочке, которые спекаются в процессе электролиза под действием высоких температур.

Рабочее напряжение на ванне обычно составляет около 5 вольт. Оно учитывает и напряжение, необходимое для разложения окиси, и неизбежные потери в разветвленной сети.

Из растворенной в расплаве на основе криолита окиси алюминия жидкий металл, который тяжелее солей электролита, оседает на угольном основании ванны. Его периодически откачивают.

Процесс производства алюминия требует больших затрат электроэнергии. Чтобы получить одну тонну алюминия из глинозема, нужно израсходовать около 13,5 тысяч кВт*ч электроэнергии постоянного тока. Поэтому еще одним условием создания крупных производственных центров является работающая рядом мощная электростанция.

Рафинация алюминия

Наиболее известный метод – это трехслойный электролиз. Он также проходит в электролизных ваннах с угольными подинами, футерованных магнезитом. Анодом в процессе служит сам расплавленный металл, который подвергается очистке. Он располагается в нижнем слое на токопроводящей подине. Чистый алюминий, который из электролита растворяется в анодном слое, понимается вверх и служит катодом. Ток к нему подводится с помощью графитового электрода.

Электролит в промежуточном слое – это фториды алюминия или чистые или с добавлением натрия и хлорида бария. Нагревается он до температуры 800°С.

Расход электроэнергии при трехслойном рафинировании составляет 20 кВт*ч на один кг металла, то есть на одну тонну нужно 20 тысяч кВт*ч. Вот почему, как ни одно производство металлов, алюминий требует наличия не просто источника электроэнергии, а крупной электростанции в непосредственной близости.

В рафинированном алюминии в очень малых количествах содержатся железо, кремний, медь, цинк, титан и магний.

После рафинирования алюминий перерабатывается в товарную продукцию. Это и слитки, и проволока, и лист, и чушки.

Продукты сегрегации, полученные в результате рафинирования, частично, в виде твердого осадка, используются для раскисления, а частично отходят в виде щелочного раствора.

Абсолютно чистый алюминий получают при последующей зонной плавке металла в инертном газе или вакууме. Примечательной его характеристикой является высокая электропроводность при криогенных температурах.

Переработка вторичного сырья

Четверть общей потребности в алюминии удовлетворяется вторичной переработкой сырья. Из продуктов вторичной переработке льется фасонное литье.

Предварительно отсортированное сырье переплавляется в пороговой печи. В ней остаются металлы, имеющие более высокую температуру плавления, чем алюминий, например, никель и железо. Из расплавленного алюминия продувкой хлором или азотом удаляются различные неметаллические включения.

Более легкоплавкие металлические примеси удаляются присадками магния, цинка или ртути и вакуумированием. Магний удаляется из расплава хлором.

Заданный литейный сплав получают, введя добавки, которые определяются составом расплавленного алюминия.

Центры производства алюминия

По объемам потребления алюминия КНР занимает первое место, оставляя далеко позади находящиеся на втором месте США и обладательницу третьего места Германию.

Китай – это и страна производства алюминия, с огромным отрывом лидирующая в этой области.

В десятку лучших, кроме КНР, входят Россия, Канада, ОАЭ, Индия, США, Австралия, Норвегия, Бразилия и Бахрейн.

В России монополистом в производстве глинозема и алюминия является объединенная компания RUSAL. Она производит до 4 млн т алюминия в год и экспортирует продукцию в семьдесят стран, а присутствует на пяти континентах в семнадцати странах.

Американской компании Alcoa в России принадлежат два металлургических завода.

Крупнейший производитель алюминия в Китае – компания Chalco. В отличие от зарубежных конкурентов, все ее активы сосредоточены в родной стране.

Подразделение Hydro Aluminium норвежской компании Norsk Hydro владеет алюминиевыми заводами в Норвегии, Германии, Словакии, Канаде, и Австралии.

Австралийская BHP Billiton владеет производством алюминия в Австралии, Южной Африке и Южной Америке.

В Бахрейне находится Alba (Aluminium Bahrain B. S. C.) – едва ли не самое крупное производство. Алюминий этого производителя занимает более 2 % общего объема «крылатого» металла, выпускаемого в мире.

Итак, подводя итоги, можно сказать, что главными производителями алюминия являются международные компании, владеющие запасами бокситов. А сам исключительно энергоемкий процесс состоит из получения глинозема из алюминиевых руд, производства фтористых солей, к которым относится криолит, углеродистой анодной массы и угольных анодных, катодных, футеровочных материалов, и собственно электролитического производства чистого металла, которое является главной составляющей металлургии алюминия.

Источник: http://fb.ru/article/243799/alyuminiy-proizvodstvo-alyuminiya-tehnologiya-protsess-i-opisanie

Понравилась статья? Поделить с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: