Нагартованный алюминий это

Содержание

Алюминиевый лист

Нагартованный алюминий это

Алюминиевый лист является полуфабрикатом, который изготавливается из алюминия или его сплавов путем горячей деформации и дальнейшей холодной прокатки.

Для изготовления листов современными производителями используется разные марки технического алюминия, в частности: А0, АД0, А5, А6,  дюралевые сплавы марок Д1, Д12, Д16, деформируемые сплавы АД31, алюминиево-марганцовые и алюминиево-магниевые – АМц и АМг соответственно. Для повышения стойкости к коррозии листы из большинства сплавов с помощью плакирования (наслаивания) покрываются пленкой алюминия высокой чистоты. Толщина ее составляет до 5-ти процентов общей толщины заготовки.

Характеристики алюминиевых листов

Характеризуется высокими антикоррозионными свойствами, малым весом, легкостью механичной обработки. Все эти качества делают его достойным конкурентом аналогов металлопроката из нержавеющей стали.

По некоторым характеристикам листовой алюминий  даже  занимает лидирующие позиции, сочетая в себе пластичность и стойкость к низким температурам, а также химическую инертность.

Материал хорошо подается штамповке, благодаря которой из него формируют объемные изделия, посредством значительной пластической деформации. Штамповкой листового алюминия получают посуду, некоторые детали машин и многое другое.

Листовой прокат общего и специального назначения изготавливается в соответствии с  ГОСТ 21631-76:

— хим. состав марки А5 определяется ГОСТ 11069-74;

— по ГОСТ 1131-76 контролируется хим. состав ВД1;

— химический состав листового проката из технических марок алюминия определяется по ГОСТ 4784-97.

Преимущества алюминиевых листов:

— малый вес;

— высокая электропроводность и теплопроводность;

— податливость любому виду обработки;

— высокая коррозионная стойкость;

— нетоксичность;

— невосприимчивость к намагничиванию;

— бактерицидные свойства.

Единственным, но существенным  недостатком данного сортамента, является невысокая прочность листового алюминия, но для повышения данного показателя на стадии производства в металл вводят присадки меди и магния.

Толщина и вес алюминиевых листов

Толщина алюминиевых листов чаще всего находится в диапазоне от 0,3 миллиметров  до 10,5 миллиметров. Наиболее востребованы габариты: 1200х3000 и 4000, 1500х3000 и 4000 миллиметров.

Вес алюминиевого листа контролируется ГОСТ 21631-76 и зависит не только от его толщины и габаритов, но и от состава сплава. Вес листа алюминиевого проката может составлять от 2,8 до 180 килограмм. Если продукция нестандартного размера, естественно, вес будет уже другой, зависимо от размеров. Например, вес алюминиевого листового проката 10х1500х6000 миллиметров составляет 247,5 килограмм.

Виды алюминиевых листов

Алюминиевые листы отличаются не только использованием сплавов различных марок, способом производства, но и методом дополнительной обработки. Согласно состоянию материала можно выделить следующие виды:

— отожженный лист (М);

— нагартованный (Н);

— полунагартованный (Н2);

— рафинированный (Р);

— естественно состаренный и закаленный (Т);

— без термической обработки.

Также алюминиевый лист различают по типоразмеру – повышенной и обычной точности толщины, что обозначается в маркировке буквой «П». И по способу производства: алюминиевый лист с технологической (Б), нормальной плакировкой (А) и без плакировки.

Зависимо от вида поверхности листовой алюминий может быть: стандартным, антискользящим, профилированным, перфорированным, гофрированной фольгой.

Стандартный алюминиевый лист (общего и специального назначения)

Стандартный прокат имеет гладкую поверхность с  повышенной, высокой или обычной отделкой. Его преимущественно используют  для производства нержавеющих конструкций, применяемых в топливной, пищевой и химической промышленностях, в строительстве, а также машиностроении. Изготовляется из алюминия и его сплавов марок: А5, 1105, АД, АМг1, АМг3, А6М, АМг2, АМг5, АМц, АМг6, АД1, ВД1, Д16 и других.

Лист алюминиевый А5

Пищевой лист А5 имеет матовую поверхность, толщину от 0,5 до 10 миллиметров, обычное качество отделки. Химический состав алюминия марки А5 соответствует  ГОСТ 11069-74. Алюминиевый лист А5 можно купить в рулонах и листах.

Характеризуется высокой теплопроводностью, коррозионной стойкостью. Благодаря высоким пластическим свойствам металлопрокат марки А5 легко формуется разными способами и обрабатывается. Материал хорошо сваривается.

При низких температурах технические характеристики остаются практически неизменными.

По состоянию металла алюминиевые листы подразделяют на нагартованные (А5Н) и мягкие или отожженные (А5М).

Термообработка оказывает  значительное влияние на физические и механические свойства, меняет структуру сплава. Пластичность и ковкость алюминиевые листы А5М приобретают в результате отжига, изделия легче поддаются резанию. Для того, чтоб частично восстановить твердость, металл подвергают прокатке с 2-5% обжатием – дрессировке. Алюминиевые листы повышенной прочности А5Н получают путем холодной обработки давлением, но при этом уменьшается ударная вязкость и пластичность.

Используются листы А5 в различных областях промышленности для производства конструкций и оборудования. Из них изготавливают пищевые емкости, обшивочные покрытия, элементы декора.

Лист алюминиевый А6М

Отожженный алюминиевый лист А6М  изготавливается в соответствии с ГОСТ 21631-76, подходит для использования в пищевой отрасли. Состав алюминия А6  контролируется ГОСТ 11069-74.

Алюминиевый лист 1105

Алюминиевый прокат 1105 представляет собой плоский сортамент из деформируемого алюминия с легирующими присадками магния и меди. Дюраль обозначают первые две цифры (11), а порядковый номер сплава – последние. Из листового алюминия 1105 изготавливают сварные конструкции и детали, которые эксплуатируются при низких температурах. Изделия характеризуются высокой вязкостью разрушения, пластичностью, легко поддаются механообработке.

Алюминиевый лист 1105Н  — упрочненный пластической деформацией нагартованный прокат. Свойства и структура меняются под воздействием на его поверхность давления. В результате уменьшается ударная вязкость и пластичность, а повышается прочность и твердость. Лист алюминия нагартованный с нормальной плакировкой отличается значительными показателями химической пассивности и маркируется 1105АН.

Зависимо от требований, предъявляемых к готовому изделию, можно применить утолщенную плакировку, что в значительной степени скажется на защищенности материала.

Алюминиевый лист 1105М —  пластичный, ковкий и мягкий листовой металлопрокат, отожженный при высокой температуре. Прокатка на прокатном стане с 2-5% обжатием (дрессировка) способствует частичному восстановлению твердости. Алюминиевый лист с утолщенным плакировочным слоем маркируется 1105УМ, а с нормальным – 1105АМ. Характеризуется повышенной устойчивостью в агрессивных условиях эксплуатации.

Алюминиевый лист 1105Т – естественно состаренный, закаленный алюминиевый сортамент, востребованный во многих отраслях промышленности. С нормальной плакировкой обозначается 1105АТ.

Алюминиевый лист АД

Отличается высокой пластичностью и стойкостью к коррозии. В качестве материала для изготовления листов используется технический алюминий с небольшим содержанием примесей. Подразделяется на мягкий (АДМ) и нагартованный (АДН). Алюминиевый лист АД широко востребован в качестве полуфабриката во многих отраслях промышленности.

Листовой алюминий АД1

Представлен в виде рулонов и листов. Производятся из алюминия марки АД1 согласно ГОСТ 21631-76, химический состав по ГОСТ 4784-74. Характеризуются легкостью формовки и механообработки, высокой устойчивостью к процессам коррозии. Цифровая маркировка определяет чистоту сплава в процентах, а буквенная – деформируемый металл.

Алюминиевый лист АД1 по состоянию материала принято классифицировать на АД1М (мягкий) и АД1Н (нагартованный). Нагартованный на одну вторую  лист маркируют как АД1Н2. Он совмещает в себе высокие механические и прочностные свойства. Мягкую и нагартованную продукцию используют для производства конденсаторов, декоративной отделки, емкостей в химической промышленности, различного рода деталей.

Алюминиевый лист АМг1

Легируемый магнием деформируемый сплав. Цифра определяет количество основной легирующей присадки, в данном случае – 1% магния. Характеризуется отличной свариваемостью, пластичностью, устойчивостью к коррозии. Используется для изготовления промышленных деталей и конструкций в строительстве. Различают мягкий и нагартованный лист АМг1.

Алюминиевый лист АМг2

По характеристикам схож с АМг1, но содержит 2% магния. Хорошо обрабатывается резанием. Различают нагартованный, отожженный и полунагартованный металлопрокат АМг2. Из рафинированного и нагартованного сплава производят алюминиевые листы АМг2НР. Благодаря низкому содержанию посторонних примесей полуфабрикаты обладают хорошей электропроводностью.

Поверхность неплакированная, рифленая или матовая.

Из отожженных и нагартованных алюминиевых листов АМг2  изготавливают обшивки грузовых авто, оборудование для гидравлики, химические емкости, которые работают под давлением, промышленные трубопроводы, транспортные детали и различные строительные конструкции.

Читайте также  Проводимость меди и алюминия таблица

Алюминиевый лист АМг3

в сплаве легирующей добавки (магния) – 3%. Поставляется металлопрокат АМг3 в рулонах и листах. Обладает хорошей пластичностью, коррозионной стойкостью и свариваемостью. Подразделяют на АМг3М (отожженный) и АМг3Н (нагартованный). Из полунагартованного и рафинированного сплава получают листы АМг3Н2Р. Поверхность без плакировки, рифленая либо матовая.

Применяется для производства конструкций средней прочности, сварных баков, промышленных трубопроводов и оборудования для гидравлики, каркасов и обшивки железнодорожных вагонов.

Алюминиевый лист АМг5

Содержит в своем составе 5% магния, различают нагартованный и отожженный полуфабрикат АМг5. Служит основным материалом при производстве химических сосудов, работающих под давлением, трубопроводов, сварных внешних конструкций, обшивки речных и морских судов, самолетов и грузовых автомобилей.

Листовой алюминий АМг6

Деформируемый сплав содержит 6% магния. По состоянию материала различают отожженные и нагартованные  листы АМг6. Встречаются полуфабрикаты АМг6БМ (с технологической плакировкой) и неплакированные. Сфера применения, как и у АМг5.

Алюминиевый лист АМц

Содержит в своем составе от 1 до 1,6% марганца. Хорошо поддается свариванию, прокат пластичен и стоек к процессам коррозии. Различают отожженный (АМцМ),  нагартованный (АМцН) и нагартованный на одну вторую сплава (АМцН2).
Листовой алюминий АМц неплакированный, с матовой поверхностью. Сфера применения включает производство обшивки судов, строительных конструкций, радиаторов, емкостей для напитков, элементов декора, химических сосудов, работающих под повышенным давлением.

Алюминиевый лист ВД1

ВД1 изготавливается из дюралевого деформируемого сплава повышенной прочности, легированного магнием и медью. Материал пластичен, хорошо обрабатывается и устойчив к коррозии. Для повышения коррозионной стойкости прокат дополнительно плакируют, т.е. покрывают тонким слоем чистого алюминия. Поэтому по способу производства различают плакированный и неплакированный прокат ВД1.

По состоянию сплава различают алюминиевые листы ВД1:

— отожженные (М);

— нагартованные (Н);

— рафинированные (Р);

— полунагартованные (Н2);

— закаленные и естественно состаренные (Т).

Термообработка оказывает значительное влияние на механические, физические свойства материала, меняет его структуру. После отжига у алюминиевых листов ВД1АМ повышается ковкость и пластичность. Металл легче резать.

Прокат повышенной прочности ВД1АН изготавливают путем холодной деформации, ударная вязкость и пластичность при этом уменьшаются. ВД1АН2 производят из сплава полунагартованного с нормальной плакировкой. Данные алюминиевые листы совмещают отличные механические и противокоррозионные свойства.

ВД1НР – очищенный и нагартованный сплав с хорошим показателем электропроводности за счет малого содержания в составе посторонних примесей.

Максимальная прочность ВД1АТ достигается за счет закалки и естественного состаривания.

Матовые и рифленые алюминиевые листы ВД1 применяются для обшивки деталей реактивных двигателей, грузовых автомобилей, производства различных строительных конструкций. Эксплуатируются в условиях повышенной температуры.

Лист алюминиевый рифленый

С рифленой поверхностью разных форм, предназначенным  для декора входных и лестничных конструкций.  Изготовляется из деформируемых сплавов марок АМг2Н2, АМг2НР,  ВД1НР. Имеет матовую поверхность, чечевичное, ромбическое, рифление дуэт, алмаз, квинтет и другие. Толщина материала от 1,5 до 4 миллиметров без учета высоты выпуклостей. Используется для изготовления облицовочных, противоскользящих и декоративных покрытий. В сфере автомобилестроения для производства порогов и ступеней.

Профилированный (гофрированный) алюминиевый лист

Источник: http://www.okorrozii.com/metalloizdeliya/alyuminievyj-list.html

Наклеп и нагартовка: особенности и отличия видов упрочнения металла

Задача упрочнения поверхностного слоя металлического изделия является достаточно актуальной во многих случаях, ведь большая часть деталей машин и различных механизмов работает под воздействием значительных механических нагрузок. Решить такую задачу позволяет как наклеп, так и нагартовка, которые, несмотря на свою схожесть, все же имеют определенные различия.

На производстве проблема упрочнения металлических поверхностей решается с помощью специального оборудования

Сущность наклепа и нагартовки

Наклеп металла является одним из способов упрочнения металлического изделия. Происходит это благодаря пластической деформации, которой такое изделие подвергают при температуре, находящейся ниже температуры рекристаллизации.

Деформирование в процессе наклепа приводит к изменению как внутренней структуры, так и фазового состава металла. В результате таких изменений в кристаллической решетке возникают дефекты, которые выходят на поверхность деформируемого изделия.

Естественно, эти процессы приводят и к изменениям механических характеристик металла. В частности, с ним происходит следующее:

  • повышается твердость и прочность;
  • снижаются пластичность и ударная вязкость, а также сопротивляемость к деформациям, имеющим противоположный знак;
  • ухудшается устойчивость к коррозии.

Упрочнение поверхности металла можно оценить по изменению микротвердости, уменьшающейся про мере удаления от поверхности

Явление наклепа, если оно относится к ферромагнитным материалам (например, к железу), приводит к тому, что у металла увеличивается значение такого параметра, как коэрцитивная сила, а его магнитная проницаемость снижается.

Если наклепанная область была сформирована в результате незначительной деформации, то остаточная индукция, которой характеризуется материал, снижается, а если степень деформации увеличить, то значение такого параметра резко возрастает.

Из положительных последствий наклепа следует отметить и то, что с его помощью можно значительно улучшить эксплуатационные характеристики более пластичных металлов, создающих значительное трение в процессе использования.

Наклепанный слой на поверхности металлического изделия может быть сформирован как специально, тогда такой процесс является полезным, так и неумышленно, в таком случае его считают вредным. Чаще всего неумышленное поверхностное упрочнение металлического изделия происходит в процессе обработки резанием, когда на обрабатываемый металл оказывается значительное давление со стороны режущего инструмента.

Упрочнение (наклеп) при обработке резанием

Увеличение прочности приводит к тому, что поверхность металла становится и более хрупкой, что является очень нежелательным последствием обработки.

Если формирование наклепа может произойти в результате как осознанных, так и неосознанных действий, то нагартовка всегда выполняется специально и является, по сути, полноценной технологической операцией, цель которой состоит в поверхностном упрочнении металла.

Деформационное уплотнение кромки этого затвора произошло в результате эксплуатации, значит ˜– это наклеп

Типы наклепа

Различают два основных типа наклепа, которые отличаются процессами, протекающими при его формировании в материале. Если новые фазы в металле, характеризующиеся иным удельным объемом, сформировались в результате протекания фазовых изменений, то такое явление носит название фазового наклепа. Если же изменения, произошедшие в кристаллической решетке металла, произошли из-за воздействия внешних сил, они называются деформационным наклепом.

Деформационный наклеп, в свою очередь, может быть центробежно-шариковым или дробеметным. Для выполнения наклепа первого типа на обрабатываемую поверхность воздействуют шариками, изначально располагающимися во внутренних гнездах специального обода.

При вращении обода (что выполняется на максимальном приближении к обрабатываемой поверхности) шарики под воздействием центробежной силы отбрасываются к его периферии и оказывают ударное воздействие на деталь.

Формирование наклепа в дробеструйных установках происходит за счет воздействия на обрабатываемую поверхность потока дробинок, перемещающихся по внутренней камере такого оборудования со скоростью до 70 м/с. В качестве таких дробинок, диаметр которых может составлять 0,4–2 мм, для наклепа могут быть использованы чугунные, стальные или керамические шарики.

Схема традиционного деформационного наклепа и график повышения твердости материала

Для того чтобы понимать, почему нагартовка или формирование наклепа приводят к упрочнению металла, следует разобраться в процессах, которые протекают в материале при выполнении таких процедур. При холодной пластической деформации, происходящей под воздействием нагрузки, величина которой превышает предел текучести металла, в его внутренней структуре возникают напряжения.

В результате металл будет деформирован и останется в таком состоянии даже после снятия нагрузки. Предел текучести станет выше, и его значение будет соответствовать величине сформировавшихся в материале напряжений. Чтобы деформировать такой металл повторно, необходимо будет приложить уже значительно большее усилие.

Таким образом, металл станет прочнее или, как говорят специалисты, перейдет в нагартованное состояние.

При холодной деформации металла, протекающей в результате воздействия соответствующего давления (в процессе, например, наклепа), дислокации, составляющие внутреннюю структуру материала, начинают перемещаться. Даже одна пара движущихся дефектных линий, сформировавшихся в кристаллической решетке, способна привести к образованию все новых и новых подобных локаций, что в итоге и повышает предел текучести материала.

Изменение структуры поверхностного слоя в результате холодной деформации

Внутренняя структура металла при его деформировании в процессе выполнения наклепа или нагартовки претерпевает серьезные изменения. В частности, искажается конфигурация кристаллической решетки, а пространственное положение кристаллов, которые ориентированы беспорядочно, упорядочивается.

Такое упорядочивание приводит к тому, что оси кристаллов, в которых они обладают максимальной прочностью, располагаются вдоль направления деформирования. Чем активнее будет выполняться деформирование, тем большее количество кристаллов примут подобное пространственное положение.

Существует ошибочное мнение, что зерна, составляющие внутреннюю структуру металла, при его деформации измельчаются. На самом деле они только деформируются, а площадь их поверхности остается неименной.

Из всего вышесказанного можно сделать вывод о том, что в процессе выполнения нагартовки или наклепа изменяется кристаллическая структура стали или другого металла, в результате материал становится более твердым и прочным, но одновременно и более хрупким. Нагартованная сталь, таким образом, представляет собой материал, который специально был подвергнут пластической деформации для улучшения прочностных характеристик.

Читайте также  Что значит анодированный алюминий

Нагартовка и оборудование для нее

Выполнение нагартовки изделий из стали особенно актуально в тех случаях, когда имеется необходимость повысить их устойчивость к поверхностному растрескиванию, а также предотвратить протекание в нем усталостных процессов. Отраслями промышленности, в которых нагартованные изделия зарекомендовали себя особенно хорошо, являются авиа- и автомобилестроение, нефтедобыча, нефтепереработка и строительство.

Устройство промышленной дробомётной установки для обработки труб

Такие методы упрочнения металлов, как контролируемый наклеп или нагартовка, могут быть реализованы при помощи различного оборудования, от качества и функциональности которого зависит результат выполняемых операций. Оборудование для нагартовки изделий из стали или других сплавов, которое сегодня представлено большим разнообразием моделей, может быть общего назначения или специального – для того, чтобы выполнять обработку деталей определенного типа (болтов, пружин и др.).

В промышленных масштабах нагартовка выполняется на автоматизированных устройствах, все режимы работы которых устанавливаются и контролируются за счет использования электронных систем. В частности, на таких станках автоматически регулируется как количество, так и скорость подачи дроби, используемой для выполнения обработки.

Дробометная установка для обработки листового и профильного металлопроката

Выполнение наклепа, при котором процесс его формирования контролируется, используется в тех случаях, когда изделие из стали нет возможности упрочнить при помощи термической обработки. Помимо нагартовки и наклепа повысить прочность поверхностного слоя металлического изделия могут и другие методы холодной пластической деформации. Сюда, в частности, относятся волочение, накатка, холодная прокатка, дробеструйная обработка и др.

Кроме стали, содержание углерода в которой не должно превышать 0,25%, такой способ упрочнения необходим изделиям из меди, а также некоторым алюминиевым сплавам. Нагартовке также часто подвергается лента нержавеющая. Ленту нагартованную применяют в тех случаях, когда обычная лента нержавеющая не способна справляться с воспринимаемыми нагрузками.

Нагартованная нержавеющая лента обладает более высокой прочностью с определенной потерей вязкости и пластичности

Наклеп, который сформировался на поверхности металлического изделия в процессе выполнения его обработки различными методами, можно снять, для чего используется специальная термическая обработка. При выполнении такой процедуры металлическое изделие нагревают, что приводит к тому, что атомы его внутренней структуры начинают двигаться активнее. В результате она переходит в более устойчивое состояние.

https://www.youtube.com/watch?v=aoicGR-JWQA

Выполняя такой процесс, как рекристаллизационный отжиг, следует учитывать степень нагрева металлической детали. Если степень нагрева незначительна, то в структуре металла снимаются микронапряжения второго рода, а его кристаллическая решетка частично искажается.

Если интенсивность нагрева увеличить, то начнут формироваться новые зерна, оси которых сориентированы в одном пространственном положении.

В результате интенсивного нагрева полностью исчезают деформированные зерна и формируются те, оси которых ориентированы в одном направлении.

Ручная правка наклепом изогнутого вала

Существует также такая технологическая операция, как правка наклепом, при помощи которой металлический вал или лист приводятся в исходное состояние.

Чтобы выполнить такую операцию, нацеленную на устранение несоответствий геометрических параметров их требуемым значениям, нет необходимости использовать специальный станок – ее выполняют при помощи обычного молотка и ровной плиты, на которую укладывается обрабатываемое изделие.

Нанося таким молотком удары по изделию, форму которого требуется исправить, добиваются формирования на его поверхности наклепанного слоя, что в итоге приведет к достижению требуемого результата.

На видео ниже показан процесс упрочнения методом наклепа колес для железнодорожной техники в дробеметной установке.

Источник: http://met-all.org/obrabotka/prochie/naklep-nagartovka-metalla-nagartovannyj.html

Алюминиевые листы

Листы изготовляют по ГОСТ 21631-76 в ред 1990 г :

  • из алюминия марок А7, А6, А5, А0, АД0, АД1
  • алюминиевых сплавов марок Д12, АМц, АМцС, АМг2, АМг3, АМг5, АМг6, АВ, Д1, Д16, В95. 

Листы подразделяют:

a) по способу изготовления:

неплакированные из сплавов марок Д12, УМн, АМцС, АМг2, АМг3, АМг5, АМг6, АВ и алюминия марок А7, А6, А5, А0, АД0, АД1 обозначают маркой сплава без дополнительных знаков
плакированные из сплавов марок АМг6 и Д16 с технологическим плакированием — Б АМг6Б, Д16Б
плакированные из сплавов марок Д1, Д6, В95 с нормальным плакированием — А Д1А, Д16А, В95А
плакированные из сплавов марок АМг6 и Д16 с утолщенным плакированием — У АМг6У, Д16У

б) по состоянию материала:

без термической обработки дополнительное обозначение не присваивается
Примечание. Листы, изготовляемые без термической обработки, кроме сплава ВД1, могут быть подвергкуты отжигу.
отожженные М Д16БМ, Д16АМ, Д16УМ и В95АМ.
Примечание. Отожженные листы из алюминия и алюминиевых сплавов можно поставлять без термической обработки, если они удовлетворяют требованиям, предъявляемым к отожженным листам по механическим свойствам, качеству поверхности и неплосткостности. Такие листы маркируют бквой М в скобках (М).
полунагартованные Н2
нагартованные Н А7Н. А6Н, А5Н, А0Н, АД0Н, АД1Н. АМцН, АМцСН и АМг2Н:
закаленные и естественно состаренные Т АВТ, Д1АТ, Д16БТ,Д16АТ и Д16УТ
закаленные и искусственно состаренные Т1 ABТ1 и B95AT1
нагартованные после закалки и естественного старения ТН Д16БТН, Д16АТН

в) по качеству отделки поверхности на группы:

высокой отделки — В А7, А6, А5, А0, АД0, АД1, АМц, АМг2
повышенной отделки — П А7, А6, А5, А0, АД0, АД1, АМц, АМцС, Д12, АМг2, АМг3, АМг5, АМг6, АМг6Б, АМг6У, АВ, Д1А, Д16Б, Д16А, Д16У, В95А
обычной отделки — без дополнительного обозначения А7, А6, А5, АО, АД0, АД1, АМц, АМцС, Д12, АМг2, АМг3, АМг5, АМг, АМг6Б, АМг6У, АВ, Д1А, Д16Б, Д16А, Д16У и В95А
Примечание. Листы высокой группы отделки изготовляют толщиной до 4,0 мм;

г) по точности изготовления по толщине:

  • повышенной точности по толщине, ширине, длине или по одному из указанных параметров — П;
  • нормальной точности по толщине, ширине, длине — без дополнительного обозначения.

Листы поставляют мерной или кратной мерной длины в пределах длин, установленных по табл. 106, с интервалом 500 мм.

В случае отсутствия в наряде-заказе указания о точности изготовления и группе отделки листы из алюминия и алюминиевых сплавов изготовляют нормальной точности и обычной отделки.

Примеры обозначений:

  • лист из сплава марки АД1, без термической обработки, обычной отделки поверхности, нормальной точности изготовления, толщиной 5 мм, шириной 1000 мм, длиной 2000 мм:

Лист АД1-5 x 1000 х 2000 ГОСТ 21631-76

  •  то же, отожженный, толщиной 5 мм, шириной 1000 мм, длиной 2000 мм:

Лист АД1.М-5 х 1000 х 2000 ГОСТ 21631— 76

  • то же, полунагартованный, повышенной отделки поверхности, нормальной точности изготовления:

Лист AД1.H2-П-5 х 1000 х 2000 ГОСТ 21631-76

  • то же, нагартованный, повышенной отделки поверхности, повышенной точности изготовления:

Лист АД1Н-П-5 х 1000 х 2000 ГОСТ 21631-76

106. Размеры листов, мм, в зависимости от марки сплава, плакирования и состояния материала

Марка алюминия, алюминиевого сплава и плакирование Толщина листа Ширина листа Длина листа
Без термической обработки
А7, А6, А5, А0 От 5,0 до 10,5 600, 800, 900 2000
АД0, АД1 600, 800, 900
Ад0, Ад1, АМц, АМцС, АМг2, АМг3, АМг5, АМг6, АМг6Б, АВ, АД1,Д16А 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
В95А 1000, 1200, 1425, 1500, 2000
1915 От 5,0 до 10,5 1200, 1500, 2000 2000-7000
Отожженные
А7, А6, А5, А0, АД0, АД1, АД00, АД От 0,3 до 10,5 600, 800, 900, 1000 2000
А7, А6, А5, А0, АД0, АД1, АД00, АД, АД0, АД, АМц, АМцС, АВ, АМг2 От 0,5 до 0,7 1000, 1200, 1400, 1500, 1600 2000-4000
Св. 0,7 до 10,5 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
АМг3, АМг5, АМг6, АМг6Б От 0,5 до 0,7 1000, 1200, 1400, 1500, 1600 2000-7000
Св. 0,7 до 10,5 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
АМг6У Св. 2,0 до 5,5 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
Д12 От 0,5 до 4,0 1200, 1500 3000-4000
Д1А, Д16Б, Д16А от 0,5 до 0,7 1000, 1200, 1400, 1500, 1600 2000-4000
Св. 0,7 до 4,0 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
Св. 4,0 до 10,5
Д16У от 0,5 до 0,7 1200, 1500 2000-4000
Св. 0,7 до 4,0 2000-7000
В95А от 0,5 до 0,7 1000, 1200, 1425, 1500 2000-4000
Св. 0,7 до 4,0 1000, 1200, 1425, 1500, 2000 2000-7000
Св. 4,0 до 10,5
В95-2А, В95-2Б, В95-1А, АКМ  От 1,0 до 10,5 1200, 1400, 1500 2000-7000
Полунагартованные
АМц, АмцС, АМг2, АМгЗ от 0,5 до 0,7 1000, 1200, 1400, 1500, 1600 2000-7000
Св. 0,7 до 4,0 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
Д12 От 0,5 до 4,0 1200, 1500 3000-4000
Нагартованные
А7, А6, А5, А0, АД0, АД1, АД00, АД От 0,3 до 10,5 600, 800, 900, 1000 2000
А7, А6, А5, А0, АД0, АД1, АД00, АД От 0,5 до 0,7 1000, 1200, 1400, 1500, 1600 2000-7000
Св. 0,7 до 4,0 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
АМц, АМцС, АМг2 От 0,5 до 0,7 1000, 1200, 1400, 1500, 1600 2000-7000
Св. 0,7 до 4,0 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
Закаленные и естественно состаренные
АВ, Д1А, Д16Б, Д16, Д16А От 0,7 до 10,5 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7200
Д16У  От 0,5 до 4,0  1200, 1500
Закаленные и искусственно состаренные
АВ от 0,5 до 0,7 1000, 1200, 1400, 1500, 1600 2000-5000
Св. 0,7 до 10,5 1000, 1200, 1400, 1500, 1600, 1800, 2000 2000-7000
В95А от 0,5 до 0,7 1000, 1200, 1425, 1500 2000-5000
Св. 0,7 до 4,0 1000, 1200, 1425, 1500, 2000 2000-7000
Св. 4,0 до 10,5
Нагартованные после закалки и естественного старения 
Д16, Д16Б, Д16А От 1,5 до 7,5 1000, 1200, 1400, 1500 2000-7200
Читайте также  Литье алюминия в домашних условиях

107. Толщина плакирующего слоя

Толщина листа, мм Толщина плакирующего слоя на каждой стороне листа, %, от номинальной толщины листа, при плакировании
технологическом нормальном утолщенном
не более не менее
От 0,5 до 1,9 Св. 1,9 » 4,0      » 4,0 » 10,5 1,5 4,0 2,0 2,0 8,0 4,0 —

108. Механические свойства образцов из листов в состоянии поставки

Марка алюминия, алюминиевого сплава и плакирование Состояние материала листов Обозначение сплава и состояние материала Состояние испытуемых образцов Толщина листа, мм Временное сопротив- ление σB, МПа Предел текучести, σ0,2, МПа Относи- тельное удлинение при l=11,3√F δ, %
не менее
А7, А6, А5, А0, АД0, АД1, АД00, АД Отожженные А7М, А6М, А5М, А0М, АД0М, АД1М, АД00М, АДМ Отожженные От 0,3 до 0,5 Св. 0,5 » 0,9 » 0,9 » 10,5 60 60 60 — — — 20,0 25,0 30,0
Полунагар- тованные А7Н2, А6Н2, А5Н2, А0Н2, АД0Н2, АД1Н2, АД00Н2, АДН2 Полунагар- тованные От 0,8 до 4,5 100 6,0
Нагартованные А7Н, А6Н, А5Н, А0Н, АД0Н, АД1Н, АД00Н, АДН Нагартованные От 0,3 до 0,8 Св. 0,8 » 3,5 » 3,5 » 10,5 145 145 130 — — — 3,0 4,0 5,0
Без термической обработки А7, А6, А5, А0, АД0, АД1, АД00, АД Без термической обработки От 5,0 до 10,5 70 15,0
АМц, АМцС Отожженные АМцМ, АМцСМ Отожженные От 0,5 до 0,7 Св. 0,7 » 3,0 » 3,0 » 10,5 90 90 90 — — — 18,0 22,0 20,0
Полунагар- тованные АМцН2, АМцСН2 Полунагар- тованные От 0,5 до 3,5 Св. 3,5 » 4,0 145 145 — — 5,0 6,0
Нагартованные АМцН, АМцСН Нагартованные 0,5 Св. 0,5 до 0,8 185 185 — — 1,0 2,0
АМц, АМцС Нагартованные АМцН, АМцСН Нагартованные Св. 0,8 до 1,2 » 1,2 » 4,0 185 185 — — 3,0 4,0
Без термической обработки АМц, АМцС Без термической обработки От 5,0 до 10,5 100 10,0
ММ Нагартованные ММН Нагартованные От 1,0 до 4,5 Не испытываются
Д12 Отожженные Д12М Отожженные От 0,5 до 4,0 155 14,0
Полунагар- тованные Д12Н2 Полунагар- тованные От 0,5 до 4,0 220 3,0
Амг2 Отожженные АМг2М Отожженные От 0,5 до 1,0 Св. 1,0 » 10,5 165 165 16,0 18,0
Полунагар- тованные АМг2Н2 Полунагар- тованные От 0,5 до 1,0 Св. 1,0 » 4,0 235-314 235-314 145 145 5,0 6,0
Нагартованные АМг2Н Нагартованные От 0,5 до 1,0 Св. 1,0 » 4,0 265 265 215 215 3,0 4,0
Без термической обработки АМг2 Без термической обработки От 5,0 до 10,5 175 7,0
Д16У Отожженные Д16УМ Отожженные от 0,5 до 1,9 Св. 1,9 до 4,0 130-225 130-235 — — 10 10
Закаленные и естественно сотаренные Д16УТ Закаленные и естественно сотаренные от 0,5 до 1,9 Св. 1,9 до 4,0 365 405 230 270 13 13
Примечание. ГОСТ предусматривает и другие марки алюминиевых сплавов.

Источник: http://www.galakmet.ru/directory/chemical/spr-al-listy.php

Нагартовка алюминия: немного физики

Методы обработки металлов давлением — прокатка, ковка, штамповка,  прессование – превращают литой алюминиевый слиток в готовый полуфабрикат или конечное изделие — алюминиевый лист, алюминиевую поковку, алюминиевую штампованную деталь или алюминиевый профиль.

 Это происходит при повышенной или комнатной температуре и может также включать один или несколько промежуточных нагревов — отжигов — алюминия или алюминиевого сплава для восстановления его пластичности.

При этом происходит два основных изменения: 1) изменение формы и 2) изменение микроструктуры и механических свойств.

Пример: прокатка фольги из слитка

Например, прокаткой из алюминиевого слитка длиной 5 м и толщиной 300 мм получают около 200 километров алюминиевой фольги толщиной 7 микрометров. Изменение формы измеряется единицами деформации. И без численной оценки деформаций ясно, что здесь они были очень большими, и их нельзя было достичь за один проход. Обычно путь изготовления фольги начинается с горячей прокатки и заканчивается холодной прокаткой и отжигом.          

Почему алюминий пластичный?

Способность подвергаться большой пластической деформации является одним из наиболее полезных свойств металлов. Металлы с гранецентрированной кубической решеткой, к которым относится и алюминий, обычно проявляют хорошую пластичность — их можно легко деформировать в различные сложные формы.

  Обычно металлы состоит из большого количества отдельных зерен или кристаллов, то есть они являются поликристаллическими. Типичное зерно или кристалл алюминия после горячей и холодной обработки, а затем отжига имеет диаметр, скажем, 40 мкм, а элементарная ячейка атомной кристаллической решетки – всего около 0,4 нм = 0,0004 мкм.

Так что каждое зерно содержит много миллионов таких элементарных ячеек – порядка 1015 штук.

Дислокации в алюминии

При разливке алюминиевых слитков первичные кристаллы растут из жидкой фазы и литая микроструктура обычно очень грубая. Когда алюминий пластически деформируют, каждое зерно деформируется путем движения линейных дефектов своей кристаллической решетки. Деформация происходит за счет проскальзывания по плоскостям скольжения вдоль направлений сдвига.

Эти дефекты называют дислокациями (рисунок 1).  Дислокации двигаются по некоторым кристаллографическим плоскостям в кристалле – так называемым «плотно упакованным плоскостям», которые известны как плоскости скольжения. Движение одной дислокации производит единичную сдвиговую деформацию, а объединенное движение сотен тысяч дислокаций — полную деформацию.

 

Рисунок 1 

В ходе деформации при комнатной температуре число дислокаций возрастает и им становится трудно двигаться сквозь атомную решетку. В этом случае говорят, что алюминий «получил нагартовку», «получил  деформационное упрочнение» или даже «наклепался», а такой алюминий или алюминиевый сплав называют нагартованным. Это означает, что для продолжения деформации требуется все большие усилия, а алюминий постепенно теряет пластичность, что, в конечном счете, приведет к образованию в нем трещин и его разрушению.

В это время на атомном уровне происходит следующее. В ходе деформации скольжение дислокаций происходит очень активно и движущиеся дислокации различных плоскостей скольжения начинают взаимодействовать друг с другом, перепутываться между собой и образовывать так называемый «лес» дислокаций. С увеличением плотности дислокаций возрастает предел текучести материала — где-то прямо пропорционально корню квадратному из плотности дислокаций. 

Возврат и рекристаллизация деформированного алюминия

Дислокации, которые возникли при нагартовке алюминия, можно удалить путем нагрева нагартованного металла до умеренно высокой температуры, например, 345 °С. Это заставляет алюминий снова стать мягким и восстанавливает его пластичность. Этот нагрев называют отжигом.

Изменения микроструктуры, которые происходят в ходе отжига, называют возвратом и рекристаллизацией. В ходе деформации при повышенных температурах обычно происходят процессы восстановления.

Их называют динамическим возвратом и динамической рекристаллизацией

Благодаря этим процессам алюминий не нагартовывается так сильно как при комнатной температуре и требует для деформирования намного более низкие нагрузки. Уже при температуре 200 ºС чистый алюминий почти полностью теряет способность к нагартовке.

  При умеренных пластических деформациях алюминиевых сплавов дислокации в них распределяются неоднородно, а формируют ячейки со стенками из перепутанных дислокаций и малой плотностью дислокаций внутри ячеек. Обычно эти ячейки имеют диаметр порядка 1 микрометра. Когда происходит возврат, стенки ячеек становятся границами так называемых субзерен.

При отжиге алюминия или алюминиевого сплава после большого объема холодной пластической деформации происходит процесс рекристаллизации с образованием новых зерен (рисунок 2). Движущей силой рекристаллизации является запасенная внутренняя энергия, которая возникает при образовании дислокаций.

Рисунок 2

Плотность дислокаций можно выразить в виде их суммарной длины в единице объема материала. Для отожженного материала это может быть величина около 1010 м-2, а для сильно нагартованного алюминия она доходит до 1015 м-2.

Источник: TALAT 1251

Источник: http://aluminium-guide.ru/nagartovka-alyuminiya-nemnogo-fiziki/

Понравилась статья? Поделить с друзьями: