Обработка нержавеющей стали на токарном станке

Содержание

Режимы резания при токарной обработке

Обработка нержавеющей стали на токарном станке

При токарной обработке с заготовки за определенное число проходов снимается лишний металл, называемый припуском. В результате получается изделие заданной формы с требуемыми размерами и классом шероховатости поверхностей. В общем виде операция точения детали на токарном станке выглядит следующим образом: резец последовательно перемещается с заданной подачей вглубь металла вращающейся заготовки, при этом его режущая кромка за каждый оборот удаляет с заготовки заданную толщину металла.

Режимы резания при токарной обработке

Режимы резания при токарной обработке определяют на основании ряда технических показателей, среди которых самые значимые — это подача инструмента и частота вращения детали, закрепленной в шпинделе станка. Правильный выбор и применение режимов обработки гарантируют не только геометрическую точность и экономичность изготовления, но и сохранность детали, инструмента и оборудования, а также безопасность станочника.

Основные параметры

Одна из главных задач технологической подготовки производства при токарных работах — это определение рациональных режимов резания. При их расчете должны учитываться особенности обрабатываемого изделия и возможности станочного парка, а также наличие соответствующего инструмента, приспособлений и оснастки.

Компоновка узлов и агрегатов токарного станка позволяет реализовать два определяющих вида движения, которые формируют заданную конфигурацию поверхностей детали: вращение заготовки (главное движение) и перемещение резца вглубь и вдоль поверхности детали (подача).

Поэтому основными технологическими параметрами для токарного оборудования являются:

  • глубина резания;
  • подача и обороты шпинделя;
  • скорость резания.

Существует взаимовлияние режимов резания и основных элементов производственной экономики. Среди них самые значимые — это:

  • производительность оборудования;
  • качественные показатели производства;
  • стоимость выпускаемых изделий;
  • износ оборудования;
  • стойкость инструмента;
  • безопасность труда.

Понятие о режимах резания

Точение на предельных режимах повышает производительность токарного оборудования. Однако такая работа станков не всегда возможна и целесообразна, т.к. существуют ограничения в виде предельной мощности главного привода, жесткости и прочности обрабатываемых изделий, а также технологических параметров инструмента и оснастки.

Еще одним ограничением являются характеристики отдельных материалов. К примеру, титан и нержавеющая сталь для токарной обработки являются одними из наиболее сложных материалов и требуют особого подхода при определении параметров технологической операции.

При неправильном расчете или подборе технологических параметров работа на высоких скоростях может вызвать повышенную вибрацию и разбалансировку отдельных механизмов токарного станка. Это приводит к понижению точности и повторяемости размеров изделий. Кроме этого повышается риск поломки инструмента и выхода из строя станка.

Глубина

Припуск — это толщина металла, удаляемого токарным резцом с заготовки до достижения ею чистового размера. При обточке и расточке он удаляется поэтапно за заданное число резов. Толщина металла, удаляемого за единичный проход резца, в механообработке носит название глубина резания и измеряется в миллиметрах. В технологических расчетах и таблицах этот параметр обозначают буквой t.

При операциях обточки она равна 1/2 разности диаметров перед и после обточки детали и вычисляется по формуле:

t = (D-d)/2,

где t – глубина резания; D — диаметр заготовки; d – заданный диаметр детали.

При операциях подрезки — это размер слоя металла, удаляемого с торца заготовки за единичный проход резца, а при проточке и отрезке — глубина канавки.

Глубина резания

В идеальном случае на удаление припуска требуется один проход резца. Но в реальности токарный процесс, как правило, включает в себя черновой и чистовой этап обработки (а для поверхностей с повышенной точностью – и получистовой). При хороших характеристиках и форме заготовки обе эти операции выполняются за два-три прохода.

Подача

Подача при токарной обработке — это длина пути при поперечном перемещении режущей кромки резца, совершаемом ей за единичный оборот шпинделя. Ее измеряют в мм/об, в технологической документации обозначают буквой S и подбирают по технологическим справочникам. Величина подачи зависит от мощности главного привода, значения t, габаритов и физических свойств обрабатываемой заготовки. При точении она рассчитывается по формуле:

S=(0,05…0,25) ×t,

Производительность токарного оборудования напрямую связана с величиной подачи.

При операции точения подача на токарном станке должна устанавливаться на максимально возможное число, но с учетом технологических параметров станка и применяемого инструмента. При операциях по черновому точению она зависит от мощности главного привода и устойчивости детали. А при чистовом точении основным критерием является заданный класс шероховатость поверхности.

Скорость

Скорость резания при токарной обработке — это суммарная траектория режущей кромки резца за единицу времени. Ее размерность — в м/мин, а в таблицах и расчетах ее обозначают буквой v и подбирают по технологической документации или рассчитывают по формулам. В последнем случае расчет происходит в следующей последовательности:

  • вычисляется величина t;
  • по справочнику выбирается значение S;
  • определяется табличное значение vт;
  • рассчитывается уточненное значение vут (умножением на корректирующие коэффициенты);
  • с учетом скорости вращения шпинделя выбирается фактическое значение vф.

Скорость резания

Этот параметр является одной из основных характеристик производительности металлорежущего оборудования и напрямую влияет на эксплуатационные режимы работы токарного станка, износ инструмента и качество обрабатываемой поверхности.

Выбор режима на практике

Расчет режимов резания при токарной обработке производится специалистами отдела главного технолога предприятия или технологического бюро цеха. Полученные результаты заносят в операционную карту, в которой приводится последовательность этапов, перечень инструмента и режимы изготовления требуемой детали на конкретном токарном станке.

Заводские и цеховые технологи рассчитывают параметры технологического процесса и выбирают соответствующие инструмент и оснастку, используя конструкторские чертежи, эмпирические формулы и табличные показатели из технологических справочников.

Но на практике реальные условия точения могут отличаться от нормативных по следующим причинам:

  • снижение точности оборудования в результате износа;
  • отклонения в геометрических размерах и физических характеристиках заготовки.
  • несоответствие характеристик материала расчетным.

Элементы резания при токарной обработке

Поэтому для уточнения расчетных технологических режимов применяют метод пробных проходов: точение небольших участков поверхности с подбором режимов и последующим замером геометрии и качества поверхности. Главные недостатки такой отладки технологического процесса — это возрастание трудозатрат и сверхнормативное использование производственных ресурсов. Поэтому его используют только в особых случаях:

  • единичное изготовление без операционной карты;
  • определение точности работы токарного оборудования перед запуском партии;
  • работа с неполноценными заготовками (брак и неточность размеров);
  • обточка литейных и кованых заготовок, не прошедших предварительную обдирку;
  • запуск в производство изделий из новых материалов.

При первом запуске в производство нового изделия, обрабатываемого на автоматизированном оборудовании, также производят пробное точение и подбирают вручную режимы резания. Токарный станок с ЧПУ выполняет все операции по программе, поэтому оператор не всегда может корректировать параметры его работы.

Кроме углеродистых сталей на токарном оборудовании обрабатывают такие металлы как легированная сталь, чугун, титан, сплавы алюминия, бронза и другие сплавы меди. Помимо этого, такую обработку используют для точения материалов с низкой температурой плавления и воспламенения, таких как пластики и дерево.

При работе с пластмассами токарные станки чаще всего применяют при обработке деталей из фоторопласта, полистирола, полиуретана, оргстекла, текстолита, а также эпоксидных и карбомидовых композитов. Все перечисленные группы материалов имеют свои особенности расчета и практического применения режимов точения.

Это хорошо видно на примере токарной обработки нержавейки — самого распространенного после углеродистой стали конструкционного материала.

Нержавеющая сталь характеризуется низкой теплопроводностью, вязкостью, коррозионной стойкостью, сохранением прочности и твердости при высоких температурах, а также неравномерным упрочнением. Кроме того, в состав некоторых сортов нержавеющей стали входят легирующие добавки повышенной твердости с абразивными характеристиками. Поэтому при работе с ней на практике применяют специальные режимы точения и методы охлаждения и смазки детали.

Токарная обработка

Обработка нержавейки ведется на повышенных оборотах при уменьшенной подаче. Высокая вязкость этого материала способствует созданию непрерывной вьющейся стружки.

Для решения этой проблемы применяют резцы со стружколомом. Для отвода тепла и смазки обрабатываемой поверхности в рабочую зону подается специальная СОЖ (смазочно-охлаждающей жидкости) на основе олеиновой кислоты. Это уменьшает нагрев заготовки и снижает износ резца. В последнее время все чаще применяют современные методы, которые также уменьшают износ инструмента: направление в рабочую зону ультразвуковых волн и подвод к металлу слаботочных импульсов.

Вычисление скорости резания

Время точения металла (tосн, основное время) — самая затратная составляющая в суммарном времени изготовления единичного изделия. Поэтому от скорости выполнения этой технологической операции напрямую зависит экономическая эффективность использования токарного оборудования.

Правильный расчет скорости резания при токарной обработке важен не только с точки зрения стоимостных показателей производственной операции. Ошибки в расчете и применении этого параметра может привести не только к браку детали, но и к повреждению токарного оборудования, оснастки и инструмента.

Читайте также  Внутришлифовальный станок с ЧПУ

Далее приводится последовательность расчета этого показателя для самой распространенной операции — обточки цилиндрической поверхности.

Основные факторы, влияющие на скорость резания

Скорость резания v имеет размерность м/мин и в общем виде вычисляется по формуле:

v = π×D×n/1000,

где D — диаметр заготовки в мм; n — скорость шпинделя в об/мин.

Но на токарном оборудовании невозможно количественно задать v в качестве параметра управления. При работе на токарных станках предусмотрена регулировка только оборотов шпинделя и подачи инструмента, которые зависит не только от значения v, но и от ряда других факторов: материала детали, мощности главного привода, вида точения и характеристик режущего инструмента. Поэтому при расчете режимов в первую очередь определяют расчетные обороты шпинделя:

n = 1000×v/π×D.

На основании полученного результата по таблицам справочной литературе выбирают соответствующее значение v, которое зависит глубины точения, подачи, материала, типа резца и вида операции.

Для расчета теоретической глубины резания t на основании чертежа определяют размерные характеристики детали и заготовки, а затем с учетом геометрических параметров инструмента вычисляют ее по формуле:

t = (D-d)/2,

где D — диаметр заготовки; d – конечный диаметр детали.

После вычисления величины t по справочникам определяют табличное значение подачи S в мм/об. В справочных таблицах учтены: вид материала (различные стали, бронза, чугун, титан, алюминиевые сплавы), тип точения (черновое, чистовое), параметры резца и геометрия его подхода к обрабатываемой поверхности. Затем по технологическим таблицам на основании полученных величин t и S определяют vτ — табличное значение скорости резания.

Далее vτ должна быть скорректирована в соответствии с реальными условиями точения, к которым относят: период стойкости и технические параметры резца, прочностные характеристики материала, физическое состояние обрабатываемых поверхностей, геометрия резания.

Корректировка vт осуществляется с помощью группы поправочных коэффициентов:

vут = vт×К1×К2×К3×К4×К5,

где vут — уточненная скорость резания; K1 — коэффициент, зависящий от времени работы резца; K2, K4 — коэффициенты, зависящие от технических параметров резца; K3 — коэффициент, зависящий от состояния обрабатываемой поверхности; K4 — коэффициент, зависящий от материала резца; K5 — коэффициент, зависящий от геометрии обработки.

После расчета vут вычисляют уточненную скорость вращения шпинделя nут по следующей формуле:

nут = 1000×vут/π×D.

Значение nут должно лежать в диапазоне паспортных скоростей главного привода станка, которые приведены в заводской документации токарного оборудования. Если полученная в результате расчетов nут не имеет точного соответствия в таблицах станка, то необходимо применить ближайшее самое меньшее число.

Формулы для токарной обработки

На последнем этапе рассчитывают фактическую скорость резания vф:

vф = π×D×nут/1000.

Vф напрямую связана с мощностью главного двигателя станка. Поэтому она является основным параметром при выборе конкретного типа токарного станка для обработки требуемой детали.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: http://StankiExpert.ru/stanki/tokarnye/rezhimy-rezaniya-pri-tokarnoj-obrabotke.html

Особенности обработки нержавеющей стали на токарных станках

Нержавеющую сталь обрабатывают уже более 100 лет, но до сих пор эта процедура сопряжена с технологическими сложностями. Из нержавейки выполняют множество деталей, постепенно вытесняющих углеродистую сталь, которая уже не выдерживает возрастающие нагрузки: для современных механизмов порог прочности углеродистых сталей слишком низок. Прочность и стойкость нержавейки, которая не меняет своих свойств при высокой температуре, давлении и воздействии агрессивных сред, влечет за собой сложность ее механической обработки.

Особенности обработки нержавеющей стали

обработка детали из нержавейки на токарном станке

Твердость и предел растяжимости нержавеющей стали и углеродистой почти одинаковы. Однако совпадают лишь механические значения. Отличается микроструктура, способность к упрочнению во время обработки, устойчивость к коррозии.

При обработке резанием нержавейка сначала упруго деформируется, потом обрабатывается легко, после чего переходит в стадию упрочнения. На этой стадии резание возможно только при значительном увеличении усилий. Все эти стадии проходит во время обработки и обычная сталь, но высоколегированная упрочняется намного заметнее.

Главные проблемы при токарной обработке стали:

  • деформационное упрочнение;
  • удаление стружки;
  • ресурс рабочего инструмента.

Вязкость. Дополнительную сложность обработке придает пластичность сталей, особенно характерная для жаропрочных марок. Стружка не обламывается, как у углеродистой стали, а завивается длинной спиралью.

Низкая теплопроводность. Слабая теплопроводность нержавейки — ее преимущество при использовании, но недостаток при обработке. В месте резания температура значительно увеличивается, поэтому необходимо охлаждать металл с помощью специальных жидкостей.

Они не только устраняют жар, но и предупреждают образование наклепа, облегчают обработку. Наклеп появляется на рабочем инструменте, изменяет его форму и приводит в негодность.

Поэтому чаще всего легированные стали обрабатывают на невысоких скоростях и специальными инструментами.

Сохранение свойств. При воздействии жара сталь не теряет твердость и прочность. Это свойство наиболее выражено у жаропрочных сталей и в комбинации с наклепом оно вызывает скорейший вывод из строя резаков, не дает возможность работать на больших скоростях.

Абразивные соединения. В составе нержавеющей стали присутствуют карбидные и интерметаллические соединения микроскопической величины. Повышенная твердость делает их подобием абразива. Резаки стачиваются и требуют постоянной правки и переточки. Трение при токарной обработке нержавейки на порядок больше, чем во время точения углеродистых сплавов.

Неравномерное упрочнение. В процессе точения материал упрочняется неравномерно. Это не очень важно при обработке маленьких деталей. Но серьезно скажется на качестве вала или другой крупной детали.

Удаление стружки

стружка нержавейки формирует длинные спирали

Скопление длинных спиральных стружек нарушает процесс обработки. Поэтому, с учетом способности нержавейки к упрочнению во время деформации, разрабатываются особые конструкции стружколомов. Кроме этого, используется интенсивная обработка поверхности охлаждающей смазкой.

Смазка подается изнутри резака под высоким давлением чтобы:

  • быстро и заметно снизить температуру резака;
  • убрать стружку подальше от резака, чтобы не ускорять его износ;
  • раздробить стружку на небольшие частички, которые проще смыть из рабочей зоны.

При токарной обработке изделий из нержавеющей стали широко используется охлаждение под высоким напором. Распыляется раствор непосредственно в место обработки. Попадая на горячую поверхность, жидкость испаряется и отбирает часть тепла. Поверхность охлаждается. Минус этого способа — большой расход охлаждающей жидкости. Но зато срок использования инструмента увеличивается в шесть раз.

В оборонной и высокоточной промышленности сталь при обработке охлаждается углекислотой при температуре -78 градусов. Это дорогой и самый эффективный способ.

Форма стружколома также очень важна. Геометрия его должна быть положительной, чтобы снизить образование тепла. Передний угол с положительным значением уменьшает самоупрочнение материала и появление наплыва на поверхности резака, устраняя главные причины повреждений во время токарной обработки стали.

Стружколом следует использовать только специализированный, для легированных сталей, хотя стружколомы обычно выпускают универсальными, для работы с самыми разными металлами. Производятся специальные стружколомы и резаки для чистовой, черновой и получистовой резки нержавейки. Они выдают наилучшие результаты и увеличивают производительность труда.

Самоупрочнение стали во время деформации

Более склонен к самоупрочнению аустенитный тип нержавейки, что доставляет дополнительные сложности при любом виде его обработки. Чем сильнее упрочняется материал, тем быстрее изнашивается резак. Эта проблема менее выражена при использовании специальных режущих пластинок. Поверхности их изнашиваются дольше, а рабочие кромки острее обычных. Острые режущие поверхности успевают обработать деталь до самоупрочнения стали и появления наплывов.

Задача усложняется при работе в несколько этапов. Иногда за один подход невозможно выбрать достаточно металла. Тогда это делают поэтапно. Эффективнее за два подхода снять по 3 мм стали, чем за один 6 мм. Рекомендуется также снимать неодинаковый слой металла за первый и второй подходы, например, 4 мм и 2 мм.

Режущий инструмент

резцы для обработки нержавейки

Эффект самоупрочнения приводит к быстрому износу резаков. Поэтому разрабатываются специальные формы кромок, переднего угла и особых материалов для резаков по нержавеющей стали.

Существует два вида специализированных режущих инструментов:

  • с химически осажденным покрытием режущей кромки (CVD);
  • с физически осажденным покрытием (PVD).

Инструменты с химически осажденными покрытиями (CVD) позволяют обрабатывать на токарных станках нержавейку на высоких скоростях, дольше не изнашиваются. Но эти резаки очень тяжело править.

Инструменты с физически осажденными покрытиями (PVD) применяются для аустенитных нержавеек. Они тоньше, чем CVD, с ровной поверхностью и острой режущей частью. Но изнашиваются они быстрее (так как толщина покрытия меньше), работают на меньших скоростях.

Виды резцов

Наивысшую износостойкость показывают резцы с покрытием TiC из твердых сплавов. В процессе производства их цианируют или азотируют. Дорогой и очень эффективный способ укрепления пластин — покрытие нитридом бора кубическим.

Твердосплавные резцы ВК3, Т15К6 и Т30К4 достаточно прочны, тверды и длительное время не изнашиваются. Большей вязкостью отличаются Т5 К110 и Т5К7, они изнашиваются быстрее. А вот для ударных нагрузок предпочтительнее использовать пластины с напайками высокой вязкости ВК8 и ВК6А.

Технологии обработки

Существуют приемы, позволяющие минимизировать отрицательные свойства нержавеющей стали:

  • минимизировать толщину снимаемого слоя металла и увеличить скорость вращения шпинделя — обработанная таким образом поверхность получится более шероховатая;
  • использовать кислоту в качестве смазки — значительно повышает износостойкость резаков, предотвращает появление наклепа, но приводит к быстрому разрушению токарного станка, а также плохо влияет на здоровье человека.

ролик демонстрирует процесс изготовления штуцеров из нержавеющей стали:

Источник: http://StanokGid.ru/osnastka/tokarnaya-obrabotka-nerzhaveyushhej-stali.html

Укрощение нержавеющей стали

Новые технологии резки помогают преодолеть трудности механической обработки

Нержавеющую сталь начали обрабатывать с начала 1900-х годов, однако, и по сей день этот процесс представляет трудности.

Читайте также  Лентошлифовальный станок своими руками

«Самая главная трудность заключается в том, что производители традиционно обрабатывали нержавеющую сталь на малых скоростях, – отмечает Стив Джейсел, старший менеджер по продукции канадской компании Iscar Tools, расположенной в г. Оквилл.

– Параметры резания были не столь агрессивны, как при обработке углеродистой и легированной марок стали, и производительность оставалась невысокой. Сегодня компании ищут более быстрые и экономичные способы повышения производительности.

Производители режущего инструмента зачастую слышат пожелания по увеличению скорости, оптимизации контроля стружкоудаления, достижению наилучшего качества резки и сокращению общего времени на изготовление детали».

Механическая обработка нержавеющей стали сопряжена с тремя основными проблемами: стружкоудаление, деформационное упрочнение и ресурс режущей пластины. В то же время нужно помнить, что в зависимости от содержания никеля и хрома различные виды нержавеющей стали могут иметь разную обрабатываемость.

Основными видами нержавеющей стали являются аустенитная, ферритная/мартенситная/дисперсионно-твердеющая и дуплексная (аустенинто-ферритная) сталь.

«Аустенитные сплавы обладают высоким содержанием никеля, что повышает их прочность и вероятность образования нароста на режущей кромке», – поясняет Курт Людкинг, менеджер по токарному инструменту компании Walter USA, г. Уокешо, США. «В ферритных/мартенситных/дисперсионно-твердеющих марках стали содержание никеля ниже, а хрома – выше. Благодаря повышенному содержанию хрома данные сплавы отличаются прочностью и большей абразивностью, что вызывает быстрый и интенсивный износ режущей пластины».

«Более высоколегированные дуплексные марки стали довольно трудно обрабатывать, – добавляет Кевин Бертон, специалист по продукции канадского подразделения Sandvik Coromant, расположенного в г. Миссиссога, – особенно в плане тепловыделения, усилия реза и стружкоудаления». По словам Бертона, распространенными механизмами износа являются износ по задней поверхности и лункообразование, пластическая деформация, выкрашивание режущей кромки и образование проточин.

Выбор инструмента для работы по нержавеющей стали также зависит от сферы применения, как утверждает Алекс Ливингстон, менеджер по продукции Tungaloy Americas, г. Брантфорд, Канада. «Некоторые процессы включают переход от прерывистого точения к непрерывному, и в каждом случае могут потребоваться различные виды стружколомов и резцов из различных материалов. Эффективная обработка нержавеющей стали обеспечивается за счет жесткого крепления резца, поскольку жесткость – залог производительности инструмента».

Распространенной проблемой является использование инструмента, не предназначенного для нержавеющей стали.

«Люди зачастую используют неподходящие комбинации материалов и геометрии, – поясняет Чед Миллер, менеджер по токарному инструменту американской компании Seco Tools, расположенной в г. Трой.

– Существуют материалы и стружколомы, специально разработанные для токарной обработки нержавеющей стали. Они решают основные проблемы, связанные с обработкой данного сплава, такие как деформационное упрочнение и износ инструмента».

Контроль удаления стружки

При токарной обработке в силу ее характера образуется длинная витая стружка, а накапливание стружки, как известно, оказывает губительное влияние на процесс обработки. Учитывая склонность нержавеющей стали к самоупрочнению при деформации, для эффективного удаления стружки необходима сложная геометрия стружколома и максимальная подача смазочно-охлаждающей жидкости.

Например, в случае высоколегированных дуплексных сталей, по утверждению Бертона, «стружкоудаление и смазочно-охлаждающая жидкость играют важную роль в предотвращении пластической деформации». Он предлагает использование режущих инструментов с внутренней подачей смазочно-охлаждающей жидкости под высоким давлением по нескольким причинам:

  • это обеспечивает наиболее эффективное охлаждение режущей пластины вблизи горячей зоны обработки;
  • стружка быстро отводится от поверхности резца, препятствуя его износу;
  • стружка ломается на мелкие части для облегчения ее удаления из зоны резания.

Важную роль играет конструкция стружколома. «По возможности следует использовать стружколом с положительной геометрией для уменьшения теплообразования, – советует Ливингстон. – Положительный передний угол стружколома снижает самоупрочнение и нарост на режущей кромке – основные факторы повреждения при обработке нержавеющей стали».

Самое важное, по мнению Джейсела – это использование стружколома, предназначенного для нержавеющей стали. Не так давно компания Iscar модифицировала всю свою линейку режущего инструмента для нержавеющей стали и представила новые инструменты для черновой, получистовой и чистовой обработки данного материала.

«Большинство стружколомов могут работать с широким спектром материалов. Отличительная черта наших новых моделей – нацеленность именно на нержавеющую сталь. Инструменты общего назначения не показывают таких результатов, как стружколомы, обладающие специализированными характеристиками, которые позволяют добиться высокой производительности и значительно облегчить выбор режущих инструментов для обработки нержавеющей стали».

Самоупрочнение при деформации

Аустенитная нержавеющая сталь как никакая другая склонна к самоупрочнению при деформации, что усложняет процессы ее черновой, получистовой и чистовой обработки. По мере упрочнения повышается степень износа режущей пластины. Для решения этой проблемы производители режущего инструмента разработали пластины с более острыми кромками и стойкими к износу поверхностями. «Острая режущая кромка позволяет избежать образования нароста и самоупрочнения, а покрытие повышает износостойкость», – уверяет Людкинг.

Проблема встает еще более остро, если обработка предполагает несколько проходов. «Если одного прохода недостаточно, можно изменить глубину резания. Например, чтобы снять слой материала толщиной 5 мм, лучше сделать два прохода по 2,5 мм. Однако в отношении данного материала предпочтительно делать проходы неравными. На мой взгляд, первый проход глубиной 3 мм и второй – 2 мм будет оптимальным решением проблемы упрочнения», – предлагает Миллер.

Ресурс режущей пластины

Самоупрочнение сокращает срок службы инструмента. Производители видят решение проблемы износа в оптимизации геометрии – более острой заточки кромок и использовании положительного переднего угла, а также в применении новых покрытий для работы на высоких скоростях и подачах.

«Создание режущих инструментов для нержавеющей стали – это всегда поиск компромисса, – поясняет Людкинг. – Толстые покрытия, нанесенные методом химического осаждения (CVD), повышают стойкость к износу и позволяют перейти к более высоким режимам резания, увеличивая тем самым производительность. В то же время такие покрытия сложнее поддаются заточке».

Покрытия, наносимые методом физического осаждения (PVD), используемые в основном для нержавеющих сталей аустенитного класса, имеют меньшую толщину, обеспечивая остроту кромки и гладкость поверхности. При этом режимы скорости и подачи ниже, и в связи с малой толщиной высока вероятность повреждения и быстрого износа инструмента.

Одни производители разрабатывают новые варианты покрытий CVD и PVD для решения упомянутых проблем, в то время как другие развивают процессы финишной обработки в целях повышения износостойкости.

«С применением нашей новой технологии пользователи отметили приближение параметров получистовой обработки нержавеющей стали к параметрам обработки углеродистых и легированных марок, – отмечает Джейсел. – Скорость резания значительно выросла: раньше она составляла 122-137 м/мин, теперь же достигает 274 м/мин».

Тем временем Tungaloy недавно представила новые модели инструментов для обработки нержавеющей стали. Данные инструменты имеют покрытие, наносимое методом химического и физического осаждения по технологии «PremiumTec», которое обладает высокой стойкостью к выкрашиванию и обеспечивает непревзойденную гладкость поверхности, как пояснил менеджер компании Алекс Ливингстон.

Ряд производителей предлагает использовать режущие пластины с геометрией Wiper, которые предоставляют высокое качество обработки поверхности на высоких скоростях подачи.

«Как правило, для достижения гладкой поверхности требуется подача на малых скоростях, – отмечает Миллер. – Но с помощью пластины Wiper обработка может осуществляться в три раза быстрее, при этом качество поверхности будет таким же, как и с использованием обычной пластины. Кроме того, при высокой скорости подачи обеспечивается лучший контроль стружкоудаления».

В то время как производители соревнуются в новых разработках, некоторые проблемы остаются неразрешенными. Одна из них – все растущая потребность в повышении скорости обработки.

«Производительность определяется скоростными возможностями, и здесь всегда присутствует простор для совершенствования», – утверждает Людкинг.

По его словам, еще одной сферой модификаций, возможно, станет развитие технологии стружколомов. Он предсказывает «непрерывное совершенствование геометрии для контроля стружкоудаления в расширенном диапазоне подач, что упростит для пользователя выбор режущих пластин при работе на низких и высоких скоростях».

Источник материала: перевод статьи
Tackling Stainless Steel,
SMT 

Автор статьи-оригинала:
Mary Scianna

Источник: http://TverdySplav.ru/ukroshhenie-nerzhaveyushhej-stali/

Обработка нержавейки: популярные методики, способы и рекомендации

Существует несколько режимов обработки нержавейки, которые помогают не только улучшить ее качественные характеристики, но также значительно улучшают ее внешний вид. Кроме того, обработка такой металлической поверхности позволяет подводить эксплуатационные показатели к нужным показателям.

Шлифовка материала

Благодаря разным способам обработки нержавейки она достаточно часто используется не только для изготовления деталей или конструкционных элементов, но и для украшения.

Для того чтобы улучшить внешний вид, а также достичь необходимого уровня шероховатости покрытия, используется такой метод, как шлифование и полировка. Довольно часто эти два метода объединяются в один, и называется он сатированием.

Данный метод обработки получил такое название из-за того, что поверхность такой стали после окончания работ начинает напоминать ткань атлас или же сатин.

Обработка сварных швов нержавейки, к примеру, начинается с того, что необходимо вывести поверхность до мелких рисок. Для этого используется болгарка с кругом лепесткового типа.

Зачем нужно шлифование

Кроме того что обработка нержавейки при помощи шлифования помогает улучшить внешний вид металла, оно также может помочь в устранении поверхностных дефектов. Если устранить их полностью не получается, то при помощи этого метода можно сделать так, чтобы они были практически незаметны.

Что касается методов выполнения, то выполняться операция может как вручную, так и при помощи специального оборудования, которое работает от электрического или пневматического привода.

Есть несколько наиболее распространенных приборов, которые используются для осуществления такого метода обработки нержавейки:

  • пневматический напильник ленточный;
  • барабанно-ленточная шлифовальная машинка;
  • другие устройства, которые могут использовать шлифовальную ленту.
Читайте также  Какой токарный станок выбрать для гаража

Что касается выполнения такой операции в домашних условиях, то здесь чаще всего применяется ручной метод. Для этого обычно используют либо шлифовальные листы, либо приспособления, которые получили название шлифки. На промышленных предприятиях сатирование, конечно же, выполняется при помощи разнообразного специального оборудования.

Стоит добавить, что обработка швов нержавейки, листов и прочего начинается с того, что используется круг для шлифовки с зернистостью 180. После этого необходимо еще использовать два круга — 320 и 600. Для завершения работы необходимо обработать сплав еще и войлочным кругом.

Выполнение обработки в ручном режиме

В том случае, если обработка нержавейки после сварки осуществляется ручным способом, то необходимо придерживаться такой последовательности работ:

  • Так как поверхность до этого подвергалась сварке, то сначала необходимо удалить прижоги.
  • Поверхностную часть нержавеющего сплава, которая будет первой подвергаться такой обработке, необходимо отделить алюминиевой лентой. Укладывается она в 2 или 3 слоя.
  • Та часть, которая не заклеивается такой лентой, должна обрабатываться при помощи возвратно-поступательных движений. Однако нужно помнить, что слишком сильно давить при этом на шлифок не надо.
  • После того как будет достигнуто необходимое качество поверхности, алюминиевая лента переклеивается на тот участок, который обрабатывался до этого, а освободившееся покрытие шлифуется.

Шлифовка на станках

Стоит отметить, что возможно выполнение токарной обработки нержавейки. То есть шлифовку можно выполнять на токарном оборудовании. В таком случае на такие приспособления устанавливаются специальные круги шлифовального типа. Стоит также отметить, что выполнять данную операцию на станке можно как на производстве, так и в домашних условиях, если в наличии имеется такой агрегат. Здесь важно отметить, что эффективно выполнять такую операцию позволит даже самое простое токарное оборудование.

Что касается выполнения операции в ручном режиме, то использовать шлифок не всегда целесообразно, а потому иногда применяются шлифовальные листы. В таком случае очень важно правильно подобрать их по зернистости. Чтобы не ошибиться, обычно используют черновые детали для подбора.

Описание травления

Еще один эффективный способ обработки нержавейки после сварки — это травление. Данная технологическая операция позволит справиться с дефектами поверхности, которые возникают как раз из-за сварки, из-за термической обработки сплава, из-за обработки металла методом пластических деформаций.

Еще один плюс использования метода травления в качестве обработки — это возможность избавиться от цвета побежалости на поверхности материала. Также эта процедура позволит обновить пассивный защитный слой покрытия, который защищает нержавейку от неблагоприятного воздействия повышенных температур.

Выполнение операции

Для осуществления операции в производственных масштабах используется кислота для обработки нержавейки или же расплавленные щелочные среды. В том случае, если для травления используется кислотная среда, то процесс протекает в два последовательных этапа. На первом этапе сплав обрабатывается сернокислым раствором, на втором — используется раствор, основу которого составляет азотная кислота.

В том случае, если применяется щелочная кислота при травлении, то сталь помещается в раствор каустической соды. Этот раствор способен полностью убрать оксидную пленку с поверхности металла, не испортив при этом его структуру.

Что касается выполнения такой операции в домашних условиях, то использование кислотных или щелочных средств исключено. Для этого были изобретены специальные травильные пасты. Их особенность заключается в том, что они имеют желеобразную консистенцию. Использовать такие пасты необходимо крайне осторожно, так как кроме азотной и плавиковой кислоты, в состав входит еще соляная кислота и хлорид, а эти вещества представляют угрозу для здоровья человека.

Применение пасты

Наносить травильную пасту можно лишь на ту поверхность, которая предварительно была хорошо очищена, а также обезжирена. Чтобы достичь нужного эффекта, необходимо просто промыть деталь теплой водой, а после этого промыть любым моющим средством. После нанесения пасты необходимо оставить ее на поверхности металла. Время выдержки составляет от 10 до 60 минут. По истечении нужного срока паста смывается обычной проточной водой.

Для нанесения такого состава придется использовать либо кисточку кислостойкого типа, либо специальную пластиковую лопатку. Стоит добавить, что если площадь металла достаточно большая, то для нанесения можно использовать травильный спрей, который распыляется при помощи оборудования для струйного напыления. На сегодняшний день есть несколько производителей травильных паст, которые известны больше всего.

К таким компаниям принадлежат SAROX TS-K 2000, Avesta BlueOne и Stain Clean (ESAB).

Есть несколько других способов обработки, которые используются реже, но все же иногда применяются. Один из таких методов — это хромирование. Применение данного режима обработки позволяет достичь таких качеств, как:

  • улучшение внешнего вида;
  • повышение устойчивости к механическим воздействиям;
  • сильное увеличение устойчивости к воздействию коррозии.

Недостатком данного метода является то, что выполнять его можно только в условиях производства. Операция достаточно сложная, а потому требуется квалифицированный специалист для ее выполнения. Кроме того, необходимы и специальные расходные элементы. По этим причинам выполнять хромирование в домашних условиях не получится.

Однако в домашних мастерских можно успешно выполнять другую операцию, которая получила название воронение. Она поможет придать поверхности привлекательный внешний вид. Данная процедура может выполняться тремя разными способами. Первый способ — это применение кислотных растворов, второй способ сопровождается применением щелочи, последний вариант — это использование теплового воздействия.

Применение токарной обработки

Обработка нержавейки на токарном станке в настоящее время также возможна. Однако существует несколько проблем. Такие параметры, как предел растяжимости и твердость, у нержавейки и углеродистой стали практически одинаковы. Однако имеется большая разница в микроструктуре материала, а потому возникают и некоторые проблемы.

К примеру, если применяется метод резания нержавеющей стали, то она сначала будет упруго деформироваться, после чего легко поддается обработке, а потом начинается стадия упрочнения. На таком этапе резать металл получится только в том случае, если будет приложено значительно больше усилий. Разница заключается в том, что высоколегированная сталь, как нержавейка, подвергается всем этим этапам намного заметнее, чем обычная. Есть несколько основных проблем, которые выделяются при таком способе обработки.

Первая проблема — это существенное деформационное упрочнение. Вторая проблема — это необходимость удаления стружки. Третья проблема — это износ рабочего инструмента. Есть еще одна проблема, которая довольно сильно выделяется у жаропрочных марок нержавеющих сплавов. Проблема заключается в высоком коэффициенте вязкости. Из-за этого стружка не осыпается, а постоянно закручивается в длинную спираль.

Инструменты для резки

Из-за того, что сталь способна к сильному самоупрочнению, приходится разрабатывать специальные виды кромок для режущего инструмента. Кроме того, необходимо использовать и специальные сплавы для изготовления таких специальных инструментов. На сегодняшний день есть два вида специальных инструментов.

Первый тип — это режущее приспособление, которое имеет химически осажденное покрытие. Второй тип обладает физически осажденным покрытием режущей кромки инструмента для резки сплава.

Источник: http://fb.ru/article/396297/obrabotka-nerjaveyki-populyarnyie-metodiki-sposobyi-i-rekomendatsii

Обработка нержавеющей стали на токарном станке

Рабочие процессы в современных установках и агрегатах проходят при значительных нагрузках на все конструктивные элементы. Эксплуатация деталей при высоких скоростях, давлении и температурах приводит к тому, что элементы, выполненные из обычных конструктивных сталей, быстро выходят из строя.

Для работы в таких условиях необходимы особые сплавы, к числу которых относится нержавеющая сталь. Высокая прочность, жаростойкость и хорошие антикоррозийные свойства – основные характеристики нержавейки.

Однако эти свойства сплавов имеют и отрицательные стороны: прочностные характеристики нержавеющей стали не изменяются под воздействием давления и температур, что влечёт за собой сложность механической обработки.

Самоупрочнение нержавеющей стали и выбор режущего инструмента

Самоупрочнение – важнейшая характеристика нержавейки, способная вызвать дополнительные трудности при обработке. Чем сильнее упрочняется материал, тем быстрее изнашивается инструмент. При использовании специальных режущих пластинок эта проблема не так ярко выражена: их рабочие кромки острее обычных, а поверхности изнашиваются дольше.

Минимизировать воздействие самоупрочнения можно путём поэтапного снятия слоёв металла. Наиболее эффективный способ – снятие за два подхода по 3 мм стали. Часто специалисты рекомендуют снимать неодинаковые слои в первом и втором подходе.

Как уже было сказано выше, самоупрочнение приводит к быстрому износу резаков. В целях увеличения эксплуатационного ресурса инструментов разрабатываются специальные формы кромок для нержавейки. Используются два типа режущих инструментов:

  • резцы с покрытой CVD) алмазом;
  • резцы с кромкой, покрытой инструмент с физически охлаждённой кромкой (PVD) алмазом.

Наивысшей износостойкостью отличаются твёрдосплавные резцы с пластинами, покрытыми нитритом бора.

Скорость резания нержавеющей стали устанавливается по такой же методике, что и при обработке обычных конструкционных сплавов. Однако при расчётах необходимо учесть ряд особенностей обработки нержавейки.

Способы оптимизации процесса обработки нержавейки

В производственных условиях применяется ряд методик, позволяющих минимизировать отрицательное влияние характеристик нержавейки на процесс её обработки. Это:

  • увеличение скорости вращения шпинделя и уменьшение снимаемого слоя, благодаря чему обработанная поверхность получается более шероховатой;
  • использование в качестве смазки кислоты, которая на порядок повышает износоустойчивость резцов;
  • введение в зону обработки слабых токов, что позволит управлять процессами электродиффузионного и окислительного износа инструмента;
  • воздействие на зону резания ультразвуковых колебаний, что снижает пластические деформации и коэффициент трения.

Воздействовать на структуру и механические характеристики материала можно при помощи специальной термической обработки.

Источник: https://m-ser.ru/articles/tokarnaya-obrabotka-nerzhaveyushchey-stali/

Понравилась статья? Поделить с друзьями: