Ультразвуковая полировка металла

Технологии ультразвуковой обработки металла

Ультразвуковая полировка металла

В современной сфере металлообработки, механический метод работы со стальными сплавами постоянно развивается. Но технический прогресс обусловливает появление новых, высокотехнологических материалов, которые тяжело поддаются механическому воздействию. Поэтому, стали разрабатывать и внедрять в производственные процессы совершенно новые, высокотехнологические способы обработки. Одним из таких способов является ультразвуковая обработка металлов.

Принцип ультразвуковой обработки металлов

Ультразвуковой способ работы является одной из разновидностей обработки материалов долблением. Снятие поверхностного слоя с изделия осуществляется за счет образования выколов и микротрещин, при нагрузке на материал колебаниями ультразвука. Главным преимущественным качеством ультразвуковой обработки металлов считают возможность воздействовать на материалы непроводящего и непрозрачного типа.

Также, как положительные свойства такого способа работы с материалами, можно обозначить отсутствие при завершении рабочего процесса остаточного напряжения, которые могут послужить причиной образования повреждений (трещин) поверхности изделия.

Метод ультразвуковой обработки применяют при работе с хрупкими компонентами, например, агатовые камни, материалы на основе алебастра, алмазные изделия, гипсовые элементы.

Технологический принцип ультразвуковой обработки металлов состоит в заливании специального абразивного вещества в рабочий сектор. Рабочим сектором считается свободное расстояние между вибрирующим от высокочастотного раздражителя торцом инструмента для резания и поверхностью заготовки, что обрабатывается.

Абразивные зерна от колебания бьются об поверхность изделия, вызывая повреждения верхнего слоя. Для ультразвукового воздействия на обрабатываемый материал используют такие абразивные вещества, как кремниевые и боровые элементы на основе карбида. Жидкость для подачи абразива в зону обработки – простая вода.

Рабочий инструмент, которым образовывают подающие колебания при ультразвуковой обработке металлов, изготовляется из вязких компонентов, что в значительной мере уменьшает его износ. Материал для режущего инструмента не чувствительный к воздействию нагрузок ударного типа.

При воздействии вибрации абразивные частицы начинают раскалываться и, в сектор обработки, подается образовавшаяся при этом суспензия из абразива. Суспензия несет зерновые элементы свежего абразивного компонента и удаляет снятый слой материала.

Рабочий частотный диапазон для ультразвуковой обработки составляет 22 КГц, что уменьшает уровень шума при осуществлении технических операций. Поверхность материала, во время воздействия на нее рабочего инструмента, копирует его форменные очертания.

Финишная обработка поверхности металлов ультразвуком

Производительная наработка ультразвуковых процессов зависит от точности выполнения основных процессов, из которых складывается ультразвуковая обработка металлов.

Первым интенсивным процессом является внедрение абразивных частиц под ударными нагрузками, которые обусловливают снятие тонкого слоя с поверхности обрабатываемого изделия. Вторым обязательным процессом выступает регулярная циркуляция и замена абразивного вещества, непосредственно в секторе обработки.

Нарушение, снижение интенсивности, выполнения одного из перечисленных процессов, приводит к уменьшению уровня эффективности всей обработки ультразвуком.

Ультразвуковая обработка металлов начала распространятся в металлообрабатывающей сфере в шестидесятых годах. Благодаря внедрению в производственные процессы такого способа обработки материалов стало возможным облегчить технологический процесс производства изделий фасонного типа из хрупкого и твердого металла.

Также, ультразвуковой процесс изготовления изделий значительно сокращает временной период на осуществление технических задач. Единственным недостатком данного метода работы с металлическими основами – снижение производительных показателей при увеличении толщины снимаемого с заготовки слоя.

Для обработки материалов ультразвуком применяют специализированные станки, которые представляют собой универсальные ультразвуковые агрегаты для промышленного и частного производства.

Ссылка на promplace.ru обязательна

Во многих случаях полировка алюминия — это единственный способ, позволяющий вернуть изделию го первоначальный привлекательный вид. Процесс параллельного электрического и химического воздействия на алюминиевую поверхность, когда заготовка с подведенным к ней током погружается…
Механическая обработка металлов — достаточно сложный процесс, в результате которого получаются детали определенных размеров и заданных форм. Существует два способа механического воздействия на материал. Первый способ выражается в снятии верхнего слоя с рабочей поверхности. При этом глубина может быть разной зависимо от…
Читайте также  Как отличить алюминий от других металлов
Особого внимания заслуживает технология художественной обработки металлов, которая имеет несколько отличающихся друг от друга разновидностей. Первой и, пожалуй, самой древней выступает технология литья. Этот процесс многогранен и разнообразен. Так, может быть использован разный металл или сплавы, различают характер моделей, их форму…
Итогом термической обработки металлов и сплавов становится широкомасштабное изменение технических и технологических свойств металлических элементов. Высокий уровень увеличения механического сопротивления заготовки после термической обработки, если сравнивать с первоначальными…
Как правило, на выбор температуры нагрева оказывает влияние химический состав материала. Если осуществляется термообработка доэвтиктоидных сталей, то конечная температура должна быть на 30 -50 градусов выше точки АС3. Полная закалка стали обеспечивает…
Неотъемлемой частью гальванического производства является образование загрязненных сточных вод, для отвода которых используются специальные очистные сооружения. Промывные ванны наполняются водой, содержание солей в которой не должно превышать установленной нормы…
    • Весовое оборудование, весы
    • Горно-добывающая отрасль
    • Двигатели
    • Деревообработка и заготовка
    • Конвейеры и транспортеры
    • Контрольно-измерительное оборудование
    • Крановое и подъемное оборудование
    • Легкая промышленность
    • Машиностроение
    • Металлургия
    • Насосы и насосное оборудование
    • Нефтегазовая промышленность
    • Новые технологии, изобретения
    • Переработка отходов и промышленных материалов
    • Пищевая промышленность
    • Пневмооборудование, компрессоры
    • Производственный процесс
    • Производство строительных материалов и оборудования
    • Промышленное оборудование
    • Склады, логистика
    • Трубы и трубопроводная арматура
    • Упаковка, маркировка товара
    • Химия и пластмассы
    • Электрика
      • Выключатели
      • Датчики, реле
      • Компьютерная техника, процессоры, полупроводники
      • Освещение, свет, лампы, светильники
      • Провода, кабели
      • Производство электроники
      • Трансформаторы, резисторы, электротехника
      • Электронные компоненты, контроллеры
    • Электрогенераторы
    • Энергетика и электротехника
    • Архитектура, проектирование
    • Вентиляция и кондиционирование
    • Водоснабжение и канализация
    • Инженерные коммуникации
    • Новые технологии, сооружения
    • Отопление, обогреватели, котлы
    • Пожаротушение, сигнализации
    • Строительное оборудование
    • Строительные материалы
      • Бетон
      • Геотекстиль
      • Гидроизоляция
      • Гипсокартон, перегородки
      • Железобетонные конструкции
      • Кирпич, блоки, пенобетон
      • Перекрытия
      • Плитка кафельная, тротуарная
      • Сухие смеси, штукатурка, шпаклевка
      • Утеплители, теплоизоляция
      • Фасадные материалы, устройство
      • Фундаменты
      • Цемент, песок, щебень
      • Черепица, кровля, устройство крыши
    • Строительные технологии
    • Строительный бизнес

Источник: https://promplace.ru/tehnologii-ultrazvukovoj-obrabotki-metalla-1153.htm

Ультразвуковая очистка

Ультразвуковая очистка — это способ очистки поверхности твердых тел в моечном растворе, в который вводятся ультразвуковые колебания.

Введение ультразвука позволяет не только ускорить процесс очистки, но и получить высокую степень очистки поверхности, а также уменьшить объем ручного труда и отказаться от пожароопасных или токсичных растворителей.

Принцип ультразвуковой очистки

Очистка происходит за счет совместного действия различных нелинейных эффектов, возникающих в жидкости под действием мощных ультразвуковых колебаний. Эти эффекты: кавитация, акустические течения, звуковое давление и звукокапиллярный эффект, среди которых кавитация играет решающую роль. Кавитационные пузырьки, пульсируя и захлопуючись вблизи загрязнений, разрушают их. Этот эффект известен как кавитационная эрозия.

Основные виды загрязнений, которые удаляются в процессе ультразвуковой очистки, можно объединить в четыре группы:

  • твердые и жидкие пленки — разные масла, смазки, жиры, пасты и тому подобное;
  • твердый осадок — частицы металла или абразива, пыль нагар, водорастворимые неорганические соединения (накипь, флюсы) и водорастворимые или частично растворимые органические соединения (соли, сахар, крахмал, белок и т.п.);
  • продукты коррозии — ржавчина, окалина и тому подобное;
  • защитные покрытия, покрытия для консервации и защиты — эмали, смолы и тому подобное.

Технология ультразвуковой очистки

С точки зрения ультразвуковой очистки загрязнения различаются по трем признакам:

  • кавитационной стойкостью, то есть способностью выдерживать микроударни нагрузки;
  • прочностью связи с очищаемой поверхностью, устойчивостью к отслоению;
  • степенью взаимодействия с моечной жидкостью, то есть по степени способности этой жидкости растворять или эмульгировать загрязнения.

Ультразвуковая очистка не следует применять, когда кавитационная стойкость очищаемой поверхности меньше устойчивость загрязнения. Например, при удалении при хорошем пленок из алюминиевых деталей существует большая вероятность разрушения самих деталей.

Кавитационно стойкие загрязнения хорошо поддаются ультразвуковом очистке только если они слабо связаны с поверхностью или взаимодействуют с моющим раствором. Такие жировые загрязнения, хорошо отмываются в слабощелочных растворах. Покрытие из лака или краски, окалина, окислительные пленки обычно кавитационной устойчивые и хорошо связаны с поверхностью. Для ультразвуковой очистки от таких загрязнений нужны достаточно агрессивные растворы, так как здесь возможно воздействие только за три из перечисленных признаков.

Кавитационно неустойчивые загрязнения (пыль, пористая органика, продукты коррозии) относительно легко удаляются даже без применения специальных растворов.

Читайте также  Перечислите способы защиты металлов от коррозии

В зависимости от вида загрязнений целесообразно использовать следующие значения интенсивности:

  • до 1-3 Вт / см — для загрязнений, для загрязнений, легко удаляются (масляных и жировых при механической обработке изделий, растворимых в моечной жидкости осадков, флюсов и т.п.);
  • от 3 до 10 Вт / см — для загрязнений типа полировальных и притирочных паст, завернутых при обработке давлением физических загрязнений и масел, полимерных масел и т.д .;
  • более 10 Вт / см — для загрязнений, трудно удаляются (лаковых пленок, травильных шламов и т.д.).

Для очистки длинных каналов малого диаметра используется высоко-амплитудное очистки колебаниями с интенсивностью до 100 Вт / см.

Использование

Ультразвуковая очистка используется очень давно и хорошо зарекомендовало себя во многих отраслях промышленности, таких как:

  • машиностроения — до и после обработки деталей и узлов, перед консервацией и после расконсервации деталей, после сварки, шлифовки, полировки, для устранения оксидных пленок, снятия заусенцев с деталей;
  • приборостроение — мойка и полировка оптики, деталей точной механики, интегральных схем и печатных плат;
  • медицина — мойка и полировка оптики, стерилизация и очистка хирургических инструментов, ампул, в стоматологии и фармацевтической промышленности;
  • ювелирная промышленность — очистка ювелирных изделий после обработки;
  • отрасль переработки и использования полимеров — очистка фильер и тому подобное.

Моющие жидкости

Для ультразвуковой очистки важен правильный подбор моющего раствора, с тем чтобы он эффективно растворял или емульгував загрязняющие вещества, при этом по возможности не влияя на саму очищаемую поверхность. Последнее обстоятельство особенно важно, так как ультразвук обычно значительно ускоряет физико-химические процессы в жидкостях, и агрессивная моечная вещество может быстро повредить поверхность.

При ультразвуковом очистке как моечную жидкость применяют простую воду, а также и водные растворы моющих средств и органические растворители. Выбор средства определяется видом загрязнений и свойствами очищаемой поверхности.

При использовании органических растворителей (бензин Б-70, фреон-113, четыреххлористый углерод, трихлорэтилен, ацетон, дихлорэтан и т.д.) эффективно очищают поверхности деталей от полировальных паст, масел (минеральных, растительных и животных), вазелина, парафина, гудрона. Они не вызывают коррозии металла. Имея малый поверхностное натяжение, легко проникают в отверстия и щели и растворяют в них загрязнения.

Широкое применение для ультразвуковой очистки нашли фреоны. Это обусловлено их высокой растворяющей способностью, незначительной токсичностью, негорючесть и возможностью легкой регенерации.

Широкое применение в ультразвуковых установках нашли также и различные щелочные растворы. Их используют для обезжиривания деталей, очистки от смазки, полировальных паст, металлической пыли, абразивов и тому подобное.

Оснащение для ультразвуковой очистки

Для ультразвуковой очистки необходима емкость с моющим раствором и источник механических колебаний ультразвуковой частоты, носит назу «ультразвуковой излучатель». Как излучатель может использоваться поверхность ультразвукового преобразователя, корпус емкости и даже сама деталь, очищается. В последних случаях ультразвуковой преобразователь крепится, соответственно, к корпусу или к детали.

Ультразвуковой преобразователь преобразует электрические колебания, которые подаются на него в механические такой же частоты. В большинстве установок используются частоты от 18 до 44 кГц с интенсивностью колебаний от 0,5 до 10 Вт / см. Верхняя граница частотного диапазона обусловлена ​​механизмом образования и разрушения кавитационных пузырьков: при очень большой частоте пузырьки не успевают захлопываться, что снижает микроударну действие кавитации.

Преобразователи могут быть магнитострикционные или пьезокерамические. Первые отличаются большими размерами и массой, значительно ниже КПД, однако позволяют достигать большой мощности до нескольких киловатт. Пьезокерамические преобразователи является компактными, легкими, экономичными, но мощность их, как правило, не так велика — до нескольких сотен ватт. Такая мощность, впрочем, достаточно для абсолютного большинства приложений, учитывая, что в крупных установках используются сразу несколько излучателей.

Самыми известными устройствами являются ультразвуковые ванны, установки, специально предназначенные для ультразвуковой очистки. Преобразователи в таких ваннах обычно или встраиваются в отверстия в корпусе, или крепятся к корпусу, делая его излучателем, или помещаются внутрь в виде отдельных модулей. Каждый способ имеет свои преимущества и недостатки.

Отдельные модули ультразвуковых преобразователей (излучателей) могут встраиваться в технологические линии, где требуется быстрое и качественное очищение. Так, например, поступают при непрерывном очистке металлического проката и проволоки на различных стадиях их производства и использования.

Источник: http://info-farm.ru/alphabet_index/u/ultrazvukovaya-ochistka.html

Ультразвуковая полировка металла: современный способ обработки до зеркального блеска

Современные механизмы работают при больших нагрузках, актуальна проблема повышения срока службы отдельных узлов. Достичь цели позволяет повышение качества поверхностей. Чтобы повысить показатели износостойкости и прочности, в машиностроении используется ультразвуковая полировка металла, дающая возможность сделать материал менее шероховатым и более твердым. Это снижает интенсивность износа при неблагоприятных воздействиях среды и интенсивных нагрузках.

Читайте также  Как оттереть ржавчину с металла

Ультразвуком можно полировать наружные и внутренние поверхности деталей из стали, меди и других металлов. Поверхности могут быть плоские, шаровые, торцевые, цилиндрические, конические с радиусными или прямоугольными канавками. На металл воздействуют ультразвуковые колебания высокой частоты и большой силы, возникает напряжение, вызывающее пластические деформации, снижающие шероховатость.

Требуемое оборудование и химикаты

Полировка металла ультразвуком начинается с выбора абразивного (шлифовального) материала, характеризующегося различной степенью твердости. Они отличаются по составу и размерам зерна, которое может быть крупным, средним, тонким или очень тонким.

Чтобы поверхность стала действительно качественной, в процессе обработки абразивы меняются. Они деликатно снимают микрочастицы с поверхности материала без воздействия ударом. Высокую производительность обеспечивает большая амплитуда колебаний.

В промышленности используется оборудование для обработки плоских деталей, наружной и внутренней полировки цилиндрических узлов.

Основа ультразвукового инструмента – преобразователь, на котором меняются инденторы (насадки), отличающиеся по твердости.  

Для изготовления насадок используется:

  • электрокорунд (оксид алюминия);
  • циркониевый корунд (сплав окиси циркония и окиси алюминия);
  • карбид кремния или бора;
  • кварц;
  • мел.

Более простое оборудование для ультразвуковой шлифовки (полировки) металла внутри деталей.

Оно подходит только для узлов с определенными показателями диаметра и глубины прохода.

Плоские детали так же обрабатываются прямо на токарном станке.

Можно купить так же ручной аппарат ультразвуковой полировки металла, в корпус которого вмонтирован преобразователь, соединенный с генератором электродами.

Меняя насадки, можно сгладить острые углы, удалить град, устранить пазы и прорезы. Возможно использование для обработки не только плоских, но и круглых (полукруглых) поверхностей. Частота задается генератором в зависимости от вида абразива.

Пропорции создания

Часто перед окончательной обработкой поверхности необходимо чистить, особенно, если они хранились на складе и подверглись воздействию коррозии, на них наносилась смазка, образовались механические загрязнения. Используются химические составы, способные разрыхлить или растворить налет. Для активации этих жидкостей используется ультразвук.

Моющие средства (чаще всего 10-30-и процентный раствор сульфомалеинового ангидрида в воде с температурой 50-80оС) наливаются в ванну, оснащенную волноводом, от которого исходят ультразвуковые колебания.

Важно! При использовании ультразвука для приготовления раствора можно использовать более дешевые химикаты: органические кислоты, фосфат цинка, азотокислый натрий.

Ультразвуковая очистка применяется в ситуациях, когда другие способы неэффективны. Наиболее распространен такой метод очистки в производстве деталей для приборов на полупроводниках, оборудования для энергетики и коммуникаций.

Использование ванны позволяет очистить детали различных размеров и конфигураций. На больших машиностроительных предприятиях устанавливаются автоматизированные линии, почти полностью исключающие ручной труд.

Автомастерские приобретают менее громоздкое оборудование для обработки отдельных небольших узлов, например, инжекторов, карбюраторов.

Область применения

Шлифовка и полировка ультразвуком применяется на предприятиях, производящих детали и узлы для:

  • линейной промышленности (насосов, турбин, вентиляторов);
  • строительства (детали интерьера и фасадов);
  • кораблестроения;
  • металлообрабатывающей промышленности;
  • машиностроения;
  • пищевой и фармацевтической промышленности.

Важно! Заказчик может определять желаемое качество поверхностей, соблюдение требуемых показателей шероховатости. 

Преимущества и недостатки

Основные особенности технологии: изменение микроструктуры поверхностей и большая скорость деформации. Меняются технические характеристики металла:

  • повышается сопротивление к истиранию;
  • увеличиваются показатели прочности (в том числе усталостной) до 150%;
  • расширяются пределы текучести;
  • лучше отражается свет;
  • снижается магнитная, тепло- и электропроводность;
  • повышается устойчивость к образованию ржавчины.

Важно! Ультразвук позволяет получить шероховатость 0,04-0,1 мкм, соответствующую 10-12 классу.

Единственный недостаток – необходимость тщательно следить за толщиной снимаемого с поверхности слоя. Деталь теряет качество, если слой слишком толстый.

В производстве не нужно использовать шлифовальные станки или ручную работу шлифовальщиков, детали не нужно перемещать. Существует оборудование, позволяющее одновременно резать и обрабатывать ультразвуком любую деталь. Отпадает необходимость в абразивном инструменте, притирочных пастах, войлоке. На крупных предприятиях процесс полностью автоматизируется.

Источник: http://solidiron.ru/obrabotka-metalla/polirovka/ultrazvukovaya-polirovka-metalla.html

Понравилась статья? Поделить с друзьями: